References
Adegoke, A. O., Adeleke, B. O., & Ajayi, T. (2021). Geospatial intelligence for urban planning and disaster risk reduction in Nigeria. Journal of Environmental Management, 292, 112– https://doi.org/10.1016/j.jenvman.2021.112124 Ahmed, M., & Hassan, R. (2021). Machine learning approaches in geotechnical prediction. Journal of Geo-Engineering, 18(3), 145–158. Anderson, D. L., Ruggiero, P., Mendez, F. J., Barnard, P. L., Erikson, L. H., O’Neill, A. C., Merrifield, M., Rueda, A., Cagigal, L., & Marra, J. (2021). Projecting climate-dependent coastal flood risk with a hybrid statistical dynamical model. Earth’s Future, 9, e2021EF002285. Atmaja, T., & Fukushi, K. (2022). Empowering geo-based AI algorithm to aid coastal flood risk analysis: A review and framework development. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3–2022, 517–523. Bashir, O. O., Oludare, H. A., Johnson, O. O., & Aloysius, B. (2012). Floods of fury in Nigerian cities. Journal of Sustainable Development, 5(9), 69–79. Bertalanffy, L. von. (1968). General system theory: Foundations, development, applications. George Braziller. Checkland, P. (1999). Systems thinking, systems practice: Includes a 30-year retrospective. John Wiley & Sons. Chen, Y., Li, X., Zhang, Y., & Liu, J. (2020). Integration of remote sensing and machine learning for environmental monitoring and risk assessment. Environmental Modelling & Software, 132, 104816. Couasnon, A., Sebastian, A., & Morales-Nápoles, O. (2018). A copula-based Bayesian network for modeling compound flood hazard from riverine and coastal interactions at the catchment scale: An application to the Houston Ship Channel, Texas. Water, 10(9), 1190. Echendu, A. J. (2020). The impact of flooding on Nigeria’s sustainable development goals (SDGs). Ecosystem Health and Sustainability, 6(1), 1791735. Ezenwaji, E. E., Okoye, C. O., & Nwankwo, C. (2019). Application of GIS and remote sensing in flood risk mapping of coastal areas in Nigeria. Nigerian Journal of Geography and the Environment, 15(3), 45–58. Fayaz, M., Meraj, G., Khader, S. A., Farooq, M., Kanga, S., Singh, S. K., Kumar, P., & Sahu, N. (2022). Management of landslides in a rural–urban transition zone using machine learning algorithms—A case study of a national highway (NH-44), India, in the rugged Himalayan terrains. Land, 11, 884. Fernández-Díaz, V. Z., Turriza, R. A. C., Castilla, A. K., & Hinojosa-Huerta, O. (2022). Loss of coastal ecosystem services in Mexico: An approach to economic valuation in the face of sea level rise. Frontiers in Marine Science, 9, 1077. Folke, C. (2016). Resilience (Republished). Ecology and Society, 21(4), 44–52. Glago, F. J. (2021). Flood disaster hazards: Causes, impacts and management—A state-of-the-art review. In Natural hazards—Impacts, adjustments and resilience. IntechOpen. Gonzales-Inca, C., Calle, M., Croghan, D., Torabi Haghighi, A., Marttila, H., Silander, J., & Alho, P. (2022). Geospatial artificial intelligence (GeoAI) in the integrated hydrological and fluvial systems modeling: Review of current applications and trends. Water, 14, 2211. Goodchild, M. F. (2020). The evolving science of GIS and spatial analysis. International Journal of Geographical Information Science, 34(3), 431–445. Hauer, M. E., Hardy, D., Kulp, S. A., Mueller, V., Wrathall, D. J., & Clark, P. U. (2021). Assessing population exposure to coastal flooding due to sea level rise. Nature Communications, 12, He, Q., & Silliman, B. R. (2019). Climate change, human impacts, and coastal ecosystems in the Anthropocene. Current Biology, 29(18), R1021–R1035. Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S., Marzeion, B., Fettweis, X., Ionescu, C., & Levermann, A. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111(9), 3292–3297. Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23. Intergovernmental Panel on Climate Change (IPCC). (2021). Climate change 2021: The physical science basis. Cambridge University Press. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625–636. Kemper, G. (2010). Geoinformation for disaster and risk management: Examples and best practices. FIG and JB GIS. Retrieved from www.fig.net/jbgis Komolafe, A. A., Adegboyega, S. A. A., & Akinluyi, F. O. (2015). A review of flood risk analysis in Nigeria. American Journal of Environmental Sciences, 11(3), 157–166. Lai, Y., Li, J., Chen, Y. D., Chan, F. K. S., Gu, X., & Huang, S. (2023). Compound floods in Hong Kong: Hazards, triggers, and socio-economic consequences. Journal of Hydrology: Regional Studies, 46, 101321. Lee, J., Perera, D., Glickman, T., & Taing, L. (2020). Water-related disasters and their health impacts: A global review. Progress in Disaster Science, 8, 100123. Li, W., & Hsu, C.-Y. (2022). GeoAI for large-scale image analysis and machine vision: Recent progress of artificial intelligence in geography. ISPRS International Journal of Geo- Information, 11, 385. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information systems and science (4th ed.). John Wiley & Sons. Lorie, M., Neumann, J. E., Sarofim, M. C., Jones, R., Horton, R. M., Kopp, R. E., Fant, C., Wobus, C., Martinich, J., O’Grady, M., et al. (2020). Modeling coastal flood risk and adaptation response under future climate conditions. Climate Risk Management, 29, 100233. Manfré, L. A., Hirata, E., Silva, J. B., Shinohara, E. J., Giannotti, M. A., Larocca, A. P. C., & Quintanilha, J. A. (2012). An analysis of geospatial technologies for risk and natural disaster management. ISPRS International Journal of Geo-Information, 1(2), 166–185. McGranahan, G., Balk, D., & Anderson, B. (2007). The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19(1), 17–37. Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning, 147, 38–49. Mosavi, A., Ozturk, P., & Chau, K. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. Musa, S. D., & Shabu, T. (2019). Using geographic information system to evaluate land use and land cover affected by flooding in Adamawa State, Nigeria. Jàmbá: Journal of Disaster Risk Studies, 11(1), a494. NASRDA. (2022). Geo-spatial analysis for flood risk mapping in coastal Nigeria. National Space Research and Development Agency. Nichols, G., Lake, I., & Heaviside, C. (2018). Climate change and water-related infectious diseases. Atmosphere, 9(10), 385. NIMET. (2022). Annual climate and environmental risk report. Nigerian Meteorological Agency. Nkeki, F. N., Bello, E. I., & Agbaje, I. G. (2022). Flood risk mapping and urban infrastructural susceptibility assessment using GIS and analytic hierarchical raster fusion approach in the Ona River Basin, Nigeria. International Journal of Disaster Risk Reduction, 77, 103097. Nkwunonwo, U. C., Whitworth, M., & Baily, B. (2016). A review and critical analysis of the efforts towards urban flood risk management in the Lagos region of Nigeria. Natural Hazards and Earth System Sciences, 16(2), 349–369. Okolie, C. J., & Nwilo, P. C. (2020). Assessment of coastal erosion and infrastructure vulnerability using GIS techniques in southern Nigeria. Environmental Monitoring and Assessment, 192(4), 216–229. Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated