Submit your papers Submit Now
International Peer-Reviewed Journal
For Enquiries: editor@iiardjournals.org
📄 Download Paper

Cubic Transmuted Inverse Rayleigh Distribution for Modeling Breast Cancer Data

Omosigho Donatus Osaretin

Abstract

This article presents a new three-parameter statistical distribution called Cubic Transmuted Inverse Rayleigh distribution derived using cubic transmutation map suggested by Aslam et al. (2018). Various statistical properties of this distribution were investigated which includes: Hazard function, moments, moment generating function, order statistics, Renyi entropy were obtained. The maximum likelihood estimator of the unknown parameters of the distribution was derived. Application to real data set shows it tractability over its sub-models in analyzing life data.

Keywords

Moment Likelihood estimation Cubic Transmutation Map Moment generating

References

Aslam Muhammad et al. (2017). Cubic Transmuted-G Family of distributions and its properties. Stochastic and quality Control, De Gruyter, Vol. 33(2), pages 103-112 Bugra Sracoglu and Caner Tams (2018). A new statistical distribution: cubic rank transmuted kumaraswamy distrihbution and its properties. J.Natn. Sci.Foundation Sri Lanka. 46(4): 505-518 Ahmad, A.; Ahmad, S.P.; Ahmed, A. Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution. Math. Theory Model. 2014, 4, 90–98. Khan, M. S. (2014). Modified inverse Rayleigh distribution. Int. J. Comput. Appl., 87, 28–33. Khan, M.S.; King, R. (2015). Transmuted modified inverse Rayleigh distribution. Austrian J. Stat., 44, 17–29. Haq, M.A. (2015). Transmuted exponentiated inverse Rayleigh distribution. J. Stat. Appl. Prob., 5, 337–343. Haq, M. A. (2016). Kumaraswamy exponentiated inverse Rayleigh distribution. Math. Theory Model. 6, 93–104. Fatima, K.; and Ahmad, S.P. (2017). Weighted inverse Rayleigh distribution. Int. J. Stat. Syst., 12, 119–137. Elgarhy, M.; Alrajhi, S. (2019). The odd Fréchet inverse Rayleigh distribution: Statistical properties and applications. J. Nonlinear Sci. Appl., 12, 291–299. Gharraph, M. K. (1993). Comparison of estimators of location measures of an inverse Rayleigh distribution. Egypt Stat. J., 37, 295–309. Leao, J.; Saulo, H.; Bourguignon, M.; Cintra, J.; Rego, L., and Cordeiro, G. M. (2013). On some properties of the beta Inverse Rayleigh distribution. Chil. J. Stat., 4, 111–131. Mohammed, H. F., Yahia, N. (2019). On type II Topp-Leone inverse Rayleigh distribution. Appl. Math. Sci., 13, 607–615. Ogunde A. A. et al. (2020). Cubic transmuted Gompertz distribution: Properties an application. Journal of Advances in Mathematics and Computer Science 35(1):105-116, 2020. Rahman, M. M., Al-Zahrani, B., Shahbaz, M. Q. (2018). A general transmuted family of distributions. Pakistan Journal of Statistical Operation Research. 14:451–469. Renyil, A. L. (1961). On Measure on Entropy and Information. In fourth Berkeley symposium on mathematical statistics and probability. (Vol. 1, pp. 547-561). Shaw, W. T. and Buckley, I. R. C. (2007). The alchemy of probability distributions: beyond GramCharlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. UCL discovery repository, http://discovery.ucl.ac.uk/id/eprint/643923 Shannon, C. E. (1948). A Mathematical theory of communication. The Bell System Technica;l Journal, 27: 379-423. Trayer, V.N. (1964). Proceedings of the Academy of Science Belarus. USSR, 1964. Voda, V.G. (1972). On the inverse Rayleigh distributed random variable. Rep. Stat. Appl. Res., 19, 13–21. Yahia, N.; Mohammed, H.F. (2019). The type II Topp-Leone generalized inverse Rayleigh distribution. Int. J. Contemp. Math. Sci., 14, 113–122. Rao, G. S.; Mbwambo, S. (2019). Exponentiated inverse Rayleigh distribution and an application to coating weights of iron sheets data. J. Probab. Stat. 2019, 7519429.