INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )
E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 11 NO. 3 2025
DOI: 10.56201/ijccp.vol.11.no3.2025.pg10.19
Beke, Michael Abraham; Tamadu, Jasper Obi
Hybrid capacitive deionization (CDI) has emerged as a promising technique for sustainable water desalination, by leveraging on both Faradaic and capacitive mechanisms. Herein, we report the design, synthesis, and electrochemical characterization of a novel composite electrode comprising doped Na?Zr?Si?PO?? integrated with reduced graphene oxide (rGO). Doping the NASICON material with trivalent ions (Fe³? and Al³?) enhanced its ionic conductivity, while the graphene oxide network ensures an excellent charge transfer. The resulting composite exhibits synergistic effects, including high salt adsorption capacity (SAC), rapid charge-discharge kinetics, and outstanding cycling stability. The optimal SAC recorded was 125 mg/g when a 3000 mg/L saline solution was desalinated by HCDI method. The specific capacitance of the composite is 650 F/g and the galvanostatic charge/discharge after 5000 cycles retained a capacitance of 90%. The impressive electrochemical properties exhibited by the doped Na?Zr?Si?PO??@graphene oxide composites demonstrates its potential as an advanced electrode material for efficient and sustainable HCDI desalination.
Capacitive deionization, Na?Zr?Si?PO??@graphene oxide composite, electrode,
[1]
M. Gao, Z. Yang, W. Liang, T. Ao, W. Chen, Recent advanced freestanding
pseudocapacitive electrodes for efficient capacitive deionization, Separation and
Purification Technology 324 (2023). https://doi.org/10.1016/J.SEPPUR.2023.124577.
[2]
J.A. Adorna, V.D. Dang, V.T. Nguyen, B.K. Nahak, K.K. Liu, R.A. Doong,
Functionalization of MXenes [Ti3C2(=O/OH/F)X] with highly mesoporous NH2-
activated biochar for permselective salty ions removal by capacitive deionization,
Chemical Engineering Journal 504 (2025). https://doi.org/10.1016/J.CEJ.2024.158802.
[3]
A. Molaei Aghdam, N. Mikaeili Chahartagh, E. Delfani, High-Efficient Capacitive
Deionization Using Amine-Functionalized ZIF-67@ 2D MXene: Toward Ultrahigh
Desalination
Performance,
Advanced
Materials
Technologies
8
(2023).
https://doi.org/10.1002/ADMT.202300628.
[4]
R. Zhao, P.M. Biesheuvel, A. Van Der Wal, Energy consumption and constant current
operation in membrane capacitive deionization, Energy and Environmental Science 5
(2012) 9520–9527. https://doi.org/10.1039/C2EE21737F.
[5]
W.S. Chai, J.Y. Cheun, P.S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.H. Ho, P.L.
Show, A review on conventional and novel materials towards heavy metal adsorption in
wastewater treatment application, Journal of Cleaner Production 296 (2021).
https://doi.org/10.1016/j.jclepro.2021.126589.
[6]
A. Patel, S.K. Patel, R.S. Singh, R.P. Patel, Review on recent advancements in the role
of electrolytes and electrode materials on supercapacitor performances, Discover Nano
19 (2024). https://doi.org/10.1186/s11671-024-04053-1.
[7]
W. Zhou, T. Huang, Y. Zhao, D. Kang, C. Huang, M. Ding, Ternary-metal Prussian blue
analog hollow spheres/MXene electrode based on self-assembly enabling highly stable
capacitive deionization, Chemical Engineering Journal 508 (2025) 161124.
https://doi.org/10.1016/J.CEJ.2025.161124.
[8]
R. Liu, Y. Wang, Y. Wu, X. Ye, W. Cai, Controllable synthesis of nickel–cobalt-doped
Prussian blue analogs for capacitive desalination, Electrochimica Acta 442 (2023).
https://doi.org/10.1016/J.ELECTACTA.2023.141815.
[9]
Y. Ren, F. Yu, X.G. Li, B. Yuliarto, X. Xu, Y. Yamauchi, J. Ma, Soft-hard interface
design in super-elastic conductive polymer hydrogel containing Prussian blue analogues
to enable highly efficient electrochemical deionization, Materials Horizons 10 (2023)
3548–3558. https://doi.org/10.1039/D2MH01149B.
[10] X. Yang, H. Jiang, W. Zhang, T. Liu, J. Bai, F. Guo, Y. Yang, Z. Wang, J. Zhang, A
novel “butter-sandwich” Ti3C2Tx/PANI/PPY electrode with enhanced adsorption
capacity and recyclability toward asymmetric capacitive deionization, Separation and
Purification Technology 276 (2021). https://doi.org/10.1016/j.seppur.2021.119379.
[11] B. Zhao, Y. Wang, Z. Wang, Y. Hu, J. Zhang, X. Bai, Rational design of Core-Shell
heterostructured CoFe@NiFe Prussian blue analogues for efficient capacitive
deionization,
Chemical
Engineering
Journal
487
(2024).
https://doi.org/10.1016/j.cej.2024.150437.
[12] Y. Guo, Z. Chen, D. Jiang, Y. Li, W. Zhang, K. Kozumi, Y. Kang, Y. Yamauchi, Y.
Sugahara, Evolution of CuCoFe Prussian blue analogues with open nanoframe
architectures for enhanced capacitive deionization, Chemical Engineering Journal 495
(2024). https://doi.org/10.1016/j.cej.2024.153714.
[13] Y. Cai, W. Zhang, J. Zhao, Y. Wang, Flexible structural construction of the ternary
composite Ni,Co-Prussian blue analogue@MXene/polypyrrole for high-capacity
capacitive
deionization,
Applied
Surface
Science
622
(2023).
https://doi.org/10.1016/j.apsusc.2023.156926.
[14] Q. Li, Y. Zheng, D. Xiao, T. Or, R. Gao, Z. Li, M. Feng, L. Shui, G. Zhou, X. Wang, Z.
Chen, Faradaic Electrodes Open a New Era for Capacitive Deionization, (2020).
https://doi.org/10.1002/advs.202002213.
[15] L. Guo, D. Kong, M.E. Pam, S. Huang, M. Ding, Y. Shang, C. Gu, Y. Huang, H.Y.
Yang, The efficient faradaic Li4Ti5O12@C electrode exceeds the membrane capacitive
desalination performance, J Mater Chem A Mater 7 (2019) 8912–8921.
https://doi.org/10.1039/C9TA00700H.
[16] C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive
deionization (CDI) - problems and possibilities: A review, Water Res 128 (2018) 314–
https://doi.org/10.1016/j.watres.2017.10.024.
[17] M. Abraham, Preparation of And Application of Carbon Aerogel/Cobalt Phosphate
Composite for Desalination by Hybrid Capacitive Deionization Method, International
Journal of Chemistry and Chemical Processes E-ISSN 11 (n.d.) 2025.
https://doi.org/10.56201/ijccp.vol.11.no2.2025.pg77.88.
[18] J. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na(3)V(2)(PO(4))(3)@C as Faradaic
Electrodes in Capacitive Deionization for High-Performance Desalination., Nano Lett
19 (2019) 823–828. https://doi.org/10.1021/acs.nanolett.8b04006.
[19] L. Ren, J.G. Wang, H. Liu, M. Shao, B. Wei, Metal-organic-framework-derived hollow
polyhedrons of prussian blue analogues for high power grid-scale energy storage,
Electrochim Acta 321 (2019). https://doi.org/10.1016/j.electacta.2019.134671.
[20] X. Guo, J. Zhang, J. Song, W. Wu, H. Liu, G. Wang, MXene encapsulated titanium
oxide nanospheres for ultra-stable and fast sodium storage, Energy Storage Mater 14
(2018) 306–313. https://doi.org/10.1016/j.ensm.2018.05.010.
[21] Q. Liu, Z. Hu, M. Chen, C. Zou, H. Jin, S. Wang, S.L. Chou, Y. Liu, S.X. Dou, The
Cathode Choice for Commercialization of Sodium-Ion Batteries: Layered Transition
Metal Oxides versus Prussian Blue Analogs, Adv Funct Mater 30 (2020).
https://doi.org/10.1002/ADFM.201909530.
[22] S. Vafakhah, L. Guo, D. Sriramulu, S. Huang, M. Saeedikhani, H.Y. Yang, Efficient
Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode
in a Hybrid Capacitive Deionization System, ACS Appl Mater Interfaces 11 (2019)
5989–5998. https://doi.org/10.1021/ACSAMI.8B18746.
[23] X. Gao, Z. Fu, Y. Sun, D. Wang, X. Wang, Z. Hou, J. Wang, X. Liu, S. Wang, S. Yao,
H. Zhang, S. Li, Z. Tang, W. Fu, K. Nie, J. Xie, Z. Yang, Y.M. Yan, Efficient hybrid
capacitive deionization with MnO2/g-C3N4 heterostructure: Enhancing Mn dz2
electron occupancy by interfacial electron bridge for fast charge transfer, Desalination
567 (2023). https://doi.org/10.1016/j.desal.2023.116981.
[24] L. Hu, P. Jiang, P. Zhang, G. Bian, S. Sheng, M. Huang, Y. Bao, J. Xia, Amine-graphene
oxide/waterborne polyurethane nanocomposites: effects of different amine modifiers on
physical properties, J Mater Sci 51 (2016) 8296–8309. https://doi.org/10.1007/S10853-
016-9993-5.
[25] P. Zhang, R.A. Soomro, Z. Guan, N. Sun, B. Xu, 3D carbon-coated MXene architectures
with high and ultrafast lithium/sodium-ion storage, Energy Storage Mater 29 (2020)
163–171. https://doi.org/10.1016/J.ENSM.2020.04.016.
[26] G. Bharath, A. Hai, K. Rambabu, F. Ahmed, A.S. Haidyrah, N. Ahmad, S.W. Hasan, F.
Banat, Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic
electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon,
Environ Res 197 (2021). https://doi.org/10.1016/J.ENVRES.2021.111110.
[27] K. Wei, Y. Zhang, W. Han, J. Li, X. Sun, J. Shen, L. Wang, A novel capacitive electrode
based on TiO2-NTs array with carbon embedded for water deionization: Fabrication,
characterization
and
application
study,
Desalination
420
(2017)
70–78.
https://doi.org/10.1016/J.DESAL.2017.07.001.
[28] A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M.
Yumura, S. Iijima, K. Hata, Extracting the full potential of single-walled carbon
nanotubes as durable supercapacitor electrodes operable at 4 v with high power and
energy
density,
Advanced
Materials
22
(2010).
https://doi.org/10.1002/adma.200904349.
[29] P. Díaz Baizán, Z. Arias, R. Santamaría, M. Fe