Submit your papers Submit Now
International Peer-Reviewed Journal
For Enquiries: editor@iiardjournals.org
📄 Download Paper

Cobalt-ZincSulphate@Activated Carbon Composite as a High- Performance Electrode Material for Supercapacitors

Beke, Michael Abraham, Alagoa, Emmanuel Ebiegberi, Egbo, W Mansi, and, Tamadu, Jasper Obi

Abstract

In this study, a novel cobalt-zinc sulphate (CoZnSO4)/activated carbon (AC) composite was synthesized in the laboratory and studied as an electrode material for supercapacitor application. The composite material was fabricated using a facile hydrothermal route followed by thermal activation. The structural and morphological characteristics were analysed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer–Emmett– Teller (BET) surface area analysis, and scanning electron microscopy (SEM). Electrochemical studies, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge (GCD) measurements, revealed that the CoZnSO4@AC composite exhibited excellent capacitive performance, with a specific capacitance of 812 F/g at a scan rate of 5 mV/s and an outstanding cyclic stability over 5000 cycles. These results suggest that the synergistic interaction between the CoZnSO4 and activated carbon enhances both charge storage and transport, making it a promising candidate for application in high- performance supercapacitors.

Keywords

Cobalt-zinc sulphate Activated carbon Supercapacitor Pseudocapacitance

References

[1] H. Saleem, U. Rafique, R.P. Davies, Investigations on post-synthetically modified UiO- 66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution, Microporous and Mesoporous Materials 221 (2016) 238–244. https://doi.org/10.1016/J.MICROMESO.2015.09.043. [2] W.S. Chai, J.Y. Cheun, P.S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.H. Ho, P.L. Show, A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application, J Clean Prod 296 (2021). https://doi.org/10.1016/j.jclepro.2021.126589. [3] A. Patel, S.K. Patel, R.S. Singh, R.P. Patel, Review on recent advancements in the role of electrolytes and electrode materials on supercapacitor performances, Discover Nano 19 (2024). https://doi.org/10.1186/s11671-024-04053-1. [4] M. Almusawi, A. Shukla, S. Hemalatha, P. Kavitha, G.M. Gambhire, P.R. Pardeshi, B. Pragathi, Comparative Analysis of Supercapacitors vs. Batteries, in: E3S Web of Conferences, EDP Sciences, 2024. https://doi.org/10.1051/e3sconf/202459101010. [5] A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 v with high power and energy density, Advanced Materials 22 (2010). https://doi.org/10.1002/adma.200904349. [6] D. Aradilla ?, S. Sadki, G. Bidan, Beyond conventional supercapacitors: Hierarchically conducting polymer-coated 3D nanostructures for integrated on-chip micro- supercapacitors employing ionic liquid electrolytes, (2018). https://doi.org/10.1016/j.synthmet.2018.11.022. [7] T.C. Girija, M. V Sangaranarayanan, Polyaniline-based nickel electrodes for electrochemical supercapacitors—Influence of Triton X-100, J Power Sources 159 (2006) 1519–1526. https://doi.org/https://doi.org/10.1016/j.jpowsour.2005.11.078. [8] S. He, W. Chen, 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance, Nanoscale 7 (2015) 6957–6990. https://doi.org/10.1039/C4NR05895J. [9] Z. Guo, Y. Ma, X. Dong, M. Hou, Y. Wang, Y. Xia, Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor., ChemSusChem 11 (2018) 1741–1745. https://doi.org/10.1002/cssc.201800517. [10] N. Kumar, S. Bin Kim, S.Y. Lee, S.J. Park, Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives, Nanomaterials 12 (2022). https://doi.org/10.3390/nano12203708. [11] Y.M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, V.S. Bagotsky, Supercapacitor carbon electrodes with high capacitance, Journal of Solid State Electrochemistry 18 (2014) 1351–1363. https://doi.org/10.1007/s10008-013-2271-4. [12] R.B. Rakhi, W. Chen, H.N. Alshareef, Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors, J Mater Chem 22 (2012) 5177–5183. https://doi.org/10.1039/C2JM15740C. [13] M. Gharehbaghi, F. Shemirani, M. Baghdadi, Dispersive liquid-liquid microextraction and spectrophotometric determination of cobalt in water samples, Int J Environ Anal Chem 88 (2008) 513–523. https://doi.org/10.1080/03067310701809128. [14] S.G. Kandalkar, H.M. Lee, H. Chae, C.K. Kim, Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications, Mater Res Bull 46 (2011) 48–51. https://doi.org/10.1016/j.materresbull.2010.09.041. [15] A. Parveen, A.S. Roy, Enhancement of microwave absorption of polyaniline-PbTiO 3 composites prepared by using sodium dodecyl benzene sulfonoic acid, (n.d.). https://doi.org/10.1557/jmr.2012.436. [16] P. Díaz Baizán, Z. Arias, R. Santamaría, M. Ferreira, R. Menéndez, C. Blanco, Enhanced energy density of carbon-based supercapacitors using Cerium (III) sulphate as inorganic redox electrolyte, Electrochim Acta 168 (2015). https://doi.org/10.1016/j.electacta.2015.03.187. [17] O.S. Ayanda, O.S. Fatoki, F.A. Adekola, B.J. Ximba, Activated carbon-fly ash- nanometal oxide composite materials: Preparation, characterization, and tributyltin removal efficiency, J Chem (2013). https://doi.org/10.1155/2013/148129. [18] K.A. Gandionco, J.W. Kim, J.D. Ocon, J. Lee, Activated carbon-nickel (II) oxide electrodes for capacitive deionization process, Applied Chemistry for Engineering 31 (2020) 552–559. https://doi.org/10.14478/ace.2020.1064. [19] M. Beke, T. Velempini, E. Prabakaran, K. Pillay, PREPARATION OF CARBON- AEROGEL POLYPYRROLE COMPOSITE FOR DESALINATION BY HYBRID CAPACITIVE DESALINATION METHOD, Arabian Journal of Chemistry (2022) https://doi.org/10.1016/j.arabjc.2022.104412. [20] M.A.E.P.J.H.M.J. Heslop, Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO2 activation Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO 2 activation, (2007). https://doi.org/10.1007/s10450-007-9065-x. [21] M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination 305 (2012) 24–30. https://doi.org/10.1016/j.desal.2012.08.010. [22] R. Trócoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate, ChemSusChem 8 (2015) 481–485. https://doi.org/10.1002/cssc.201403143. [23] F. Li, L. Xie, G. Sun, Q. Kong, F. Su, Y. Cao, J. Wei, A. Ahmad, X. Guo, C.M. Chen, Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices, Microporous and Mesoporous Materials 279 (2019) 293–315. https://doi.org/10.1016/j.micromeso.2018.12.007. [24] J. Lee, S. Kim, J. Yoon, Rocking Chair Desalination Battery Based on Prussian Blue Electrodes, ACS Omega 2 (2017) 1653–1659. https://doi.org/10.1021/acsomega.6b00526. [25] M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage, Nat Commun 3 (2012). https://doi.org/10.1038/ncomms2139. [26] S. Mishra, N. Ghodki, Synthesis and Characterization of a Novel Conducting Biopolymer Chitosan Grafted Polyaniline-Polypyrrole Flexible Copolymer Battery View project Development of Polymer/MWCNT nano-composites for Mechanical and Tribological Applications View project Synthesis and Characterization of a Novel Conducting Biopolymer Chitosan Grafted Polyaniline-Polypyrrole Flexible Copolymer, www.ijsrm.humanjournals.com. [27] A. V. Radhamani, M. Krishna Surendra, M.S. Ramachandra Rao, Tailoring the supercapacitance of Mn2O3 nanofibers by nanocompositing with spinel-ZnMn2O4, Mater Des 139 (2018) 162–171. https://doi.org/10.1016/j.matdes.2017.11.005. [28] N. Joseph, A.C. Bose, Metallic MoS 2 grown on porous g-C 3 N 4 as an efficient electrode material for supercapattery application, Electrochim Acta 301 (2019) 401– https://doi.org/10.1016/j.electacta.2019.01.155. [29] A. Fabio, A. Giorgi, M. Mastragostino, F. Soavi, Carbon-Poly (3-Methylthiophene) Hybrid Supercapacitors, J Electrochem Soc 148 (2001) A845–A850. https://doi.org/10.1149/1.1380254. [30] F. Mansfeld, H. Shih, H.J. Greene, C. Tsai, Analysis of EIS Data for Common Corrosion Processes, in: 1993. https://api.semanticscholar.org/CorpusID:137420955. [31] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J Chem Educ 95 (2018) 197–206. https://doi.org/10.1021/acs.jchemed.7b00361.