INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )

E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 11 NO. 3 2025
DOI: 10.56201/ijccp.vol.11.no3.2025.pg1.9


Cobalt-ZincSulphate@Activated Carbon Composite as a High- Performance Electrode Material for Supercapacitors

Beke, Michael Abraham, Alagoa, Emmanuel Ebiegberi, Egbo, W Mansi, and, Tamadu, Jasper Obi


Abstract


In this study, a novel cobalt-zinc sulphate (CoZnSO4)/activated carbon (AC) composite was synthesized in the laboratory and studied as an electrode material for supercapacitor application. The composite material was fabricated using a facile hydrothermal route followed by thermal activation. The structural and morphological characteristics were analysed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer–Emmett– Teller (BET) surface area analysis, and scanning electron microscopy (SEM). Electrochemical studies, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge (GCD) measurements, revealed that the CoZnSO4@AC composite exhibited excellent capacitive performance, with a specific capacitance of 812 F/g at a scan rate of 5 mV/s and an outstanding cyclic stability over 5000 cycles. These results suggest that the synergistic interaction between the CoZnSO4 and activated carbon enhances both charge storage and transport, making it a promising candidate for application in high- performance supercapacitors.


keywords:

Cobalt-zinc sulphate, Activated carbon, Supercapacitor, Pseudocapacitance,


References:


[1]
H. Saleem, U. Rafique, R.P. Davies, Investigations on post-synthetically modified UiO-
66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution,
Microporous
and
Mesoporous
Materials
221
(2016)
238–244.
https://doi.org/10.1016/J.MICROMESO.2015.09.043.
[2]
W.S. Chai, J.Y. Cheun, P.S. Kumar, M. Mubashir, Z. Majeed, F. Banat, S.H. Ho, P.L.
Show, A review on conventional and novel materials towards heavy metal adsorption in
wastewater
treatment
application,
J
Clean
Prod
296
(2021).
https://doi.org/10.1016/j.jclepro.2021.126589.
[3]
A. Patel, S.K. Patel, R.S. Singh, R.P. Patel, Review on recent advancements in the role
of electrolytes and electrode materials on supercapacitor performances, Discover Nano
19 (2024). https://doi.org/10.1186/s11671-024-04053-1.
[4]
M. Almusawi, A. Shukla, S. Hemalatha, P. Kavitha, G.M. Gambhire, P.R. Pardeshi, B.
Pragathi, Comparative Analysis of Supercapacitors vs. Batteries, in: E3S Web of
Conferences, EDP Sciences, 2024. https://doi.org/10.1051/e3sconf/202459101010.
[5]
A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M.
Yumura, S. Iijima, K. Hata, Extracting the full potential of single-walled carbon
nanotubes as durable supercapacitor electrodes operable at 4 v with high power and
energy
density,
Advanced
Materials
22
(2010).
https://doi.org/10.1002/adma.200904349.
[6]
D. Aradilla ?, S. Sadki, G. Bidan, Beyond conventional supercapacitors: Hierarchically
conducting polymer-coated 3D nanostructures for integrated on-chip micro-
supercapacitors
employing
ionic
liquid
electrolytes,
(2018).
https://doi.org/10.1016/j.synthmet.2018.11.022.
[7]
T.C. Girija, M. V Sangaranarayanan, Polyaniline-based nickel electrodes for
electrochemical supercapacitors—Influence of Triton X-100, J Power Sources 159
(2006) 1519–1526. https://doi.org/https://doi.org/10.1016/j.jpowsour.2005.11.078.
[8]
S. He, W. Chen, 3D graphene nanomaterials for binder-free supercapacitors: scientific
design
for
enhanced
performance,
Nanoscale
7
(2015)
6957–6990.
https://doi.org/10.1039/C4NR05895J.
[9]
Z. Guo, Y. Ma, X. Dong, M. Hou, Y. Wang, Y. Xia, Integrating Desalination and Energy
Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor., ChemSusChem
11 (2018) 1741–1745. https://doi.org/10.1002/cssc.201800517.
[10] N. Kumar, S. Bin Kim, S.Y. Lee, S.J. Park, Recent Advanced Supercapacitor: A Review
of Storage Mechanisms, Electrode Materials, Modification, and Perspectives,
Nanomaterials 12 (2022). https://doi.org/10.3390/nano12203708.
[11] Y.M. Volfkovich, D.A. Bograchev, A.A. Mikhalin, V.S. Bagotsky, Supercapacitor
carbon electrodes with high capacitance, Journal of Solid State Electrochemistry 18
(2014) 1351–1363. https://doi.org/10.1007/s10008-013-2271-4.
[12] R.B. Rakhi, W. Chen, H.N. Alshareef, Conducting polymer/carbon nanocoil composite
electrodes for efficient supercapacitors, J Mater Chem 22 (2012) 5177–5183.
https://doi.org/10.1039/C2JM15740C.
[13] M. Gharehbaghi, F. Shemirani, M. Baghdadi, Dispersive liquid-liquid microextraction
and spectrophotometric determination of cobalt in water samples, Int J Environ Anal
Chem 88 (2008) 513–523. https://doi.org/10.1080/03067310701809128.
[14] S.G. Kandalkar, H.M. Lee, H. Chae, C.K. Kim, Structural, morphological, and electrical
characteristics of the electrodeposited cobalt oxide electrode for supercapacitor
applications,
Mater
Res
Bull
46
(2011)
48–51.
https://doi.org/10.1016/j.materresbull.2010.09.041.
[15] A. Parveen, A.S. Roy, Enhancement of microwave absorption of polyaniline-PbTiO 3
composites prepared by using sodium dodecyl benzene sulfonoic acid, (n.d.).
https://doi.org/10.1557/jmr.2012.436.
[16] P. Díaz Baizán, Z. Arias, R. Santamaría, M. Ferreira, R. Menéndez, C. Blanco, Enhanced
energy density of carbon-based supercapacitors using Cerium (III) sulphate as inorganic
redox
electrolyte,
Electrochim
Acta
168
(2015).
https://doi.org/10.1016/j.electacta.2015.03.187.
[17] O.S. Ayanda, O.S. Fatoki, F.A. Adekola, B.J. Ximba, Activated carbon-fly ash-
nanometal oxide composite materials: Preparation, characterization, and tributyltin
removal efficiency, J Chem (2013). https://doi.org/10.1155/2013/148129.
[18] K.A. Gandionco, J.W. Kim, J.D. Ocon, J. Lee, Activated carbon-nickel (II) oxide
electrodes for capacitive deionization process, Applied Chemistry for Engineering 31
(2020) 552–559. https://doi.org/10.14478/ace.2020.1064.
[19] M. Beke, T. Velempini, E. Prabakaran, K. Pillay, PREPARATION OF CARBON-
AEROGEL POLYPYRROLE COMPOSITE FOR DESALINATION BY HYBRID
CAPACITIVE DESALINATION METHOD, Arabian Journal of Chemistry (2022)
https://doi.org/10.1016/j.arabjc.2022.104412.
[20] M.A.E.P.J.H.M.J. Heslop, Preparation and structure characterization of carbons
prepared from resorcinol-formaldehyde resin by CO2 activation Preparation and
structure characterization of carbons prepared from resorcinol-formaldehyde resin by
CO 2 activation, (2007). https://doi.org/10.1007/s10450-007-9065-x.
[21] M.T.Z. Myint, J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon
cloth electrode for desalination of brackish water using capacitive deionization
approach, Desalination 305 (2012) 24–30. https://doi.org/10.1016/j.desal.2012.08.010.
[22] R. Trócoli, F. La Mantia, An aqueous zinc-ion battery based on copper
hexacyanoferrate,
ChemSusChem
8
(2015)
481–485.
https://doi.org/10.1002/cssc.201403143.
[23] F. Li, L. Xie, G. Sun, Q. Kong, F. Su, Y. Cao, J. Wei, A. Ahmad, X. Guo, C.M. Chen,
Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications
in energy storage devices, Microporous and Mesoporous Materials 279 (2019) 293–315.
https://doi.org/10.1016/j.micromeso.2018.12.007.
[24] J. Lee, S. Kim, J. Yoon, Rocking Chair Desalination Battery Based on Prussian Blue
Electrodes,
ACS
Omega
2
(2017)
1653–1659.
https://doi.org/10.1021/acsomega.6b00526.
[25] M. Pasta, C.D. Wessells, R.A. Huggins, Y. Cui, A high-rate and long cycle life aqueous
electrolyte battery for grid-scale energy storage, Nat Commun 3 (2012).
https://doi.org/10.1038/ncomms2139.
[26] S. Mishra, N. Ghodki, Synthesis and Characterization of a Novel Conducting
Biopolymer Chitosan Grafted Polyaniline-Polypyrrole Flexible Copolymer Battery
View project Development of Polymer/MWCNT nano-composites for Mechanical and
Tribological Applications View project Synthesis and Characterization of a Novel
Conducting Biopolymer Chitosan Grafted Polyaniline-Polypyrrole Flexible Copolymer,
www.ijsrm.humanjournals.com.
[27] A. V. Radhamani, M. Krishna Surendra, M.S. Ramachandra Rao, Tailoring the
supercapacitance of Mn2O3 nanofibers by nanocompositing with spinel-ZnMn2O4,
Mater Des 139 (2018) 162–171. https://doi.org/10.1016/j.matdes.2017.11.005.
[28] N. Joseph, A.C. Bose, Metallic MoS 2 grown on porous g-C 3 N 4 as an efficient
electrode material for supercapattery application, Electrochim Acta 301 (2019) 401–
https://doi.org/10.1016/j.electacta.2019.01.155.
[29] A. Fabio, A. Giorgi, M. Mastragostino, F. Soavi, Carbon-Poly (3-Methylthiophene)
Hybrid
Supercapacitors,
J
Electrochem
Soc
148
(2001)
A845–A850.
https://doi.org/10.1149/1.1380254.
[30] F. Mansfeld, H. Shih, H.J. Greene, C. Tsai, Analysis of EIS Data for Common Corrosion
Processes, in: 1993. https://api.semanticscholar.org/CorpusID:137420955.
[31] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L.
Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J Chem Educ 95 (2018)
197–206. https://doi.org/10.1021/acs.jchemed.7b00361.


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo