INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )
E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 11 NO. 2 2025
DOI: 10.56201/ijccp.vol.11.no2.2025.pg78.89
Beke, Michael Abraham
The availability of freshwater remains a global challenge. But the abundant saline water from the sea and estuaries can be harnessed for the production of freshwater by desalination. Hence there is a pressing need to develop a cost-effective and dependable desalination technology. In this study, we investigate the application of carbon aerogel cobalt phosphate composite for desalination of saline water by the hybrid capacitive deionization method. Aerogel was prepared by the sol-gel method, the aerogel was then heated to 1000oC under nitrogen gas flow to give carbon aerogel (CA). The CA was impregnated with cobalt and phosphate to give the composite [CA/Co3(PO4)2]. From the cyclic voltammetry analysis, the specific capacitance of the CA is 191F/g while that of the composite is 750F/g. The galvanostatic charge/discharge test of the composite shows a capacitance retention of 99% after 2000 cycles of charge/discharge. The composite was applied as electrode material for desalination of 1000 mg/L, 2000 mg/L and 3000mg/L saline solutions separately by hybrid capacitive deionization at an applied potential of 2.0V. The desalination results shows that the salt adsorption of the electrode at 1000 mg/L, was 76 mg/g, at 2000 mg/L it was 112 mg/g, and at 3000 mg/L it was 157 mg/g. From the results, it is clear that the composite material will perform very well when used as electrode in building a HCDI equipment for commercial use.
Carbon aerogel, Cobalt Phosphate, Hybrid Capacitive Deionization, Desalination
[1] K.C. Ng, K. Thu, Y. Kim, A. Chakraborty, G. Amy, Adsorption desalination: An
emerging low-cost thermal desalination method, Desalination 308 (2013) 161–179.
https://doi.org/10.1016/j.desal.2012.07.030.
[2] Y.H. Teow, A.W. Mohammad, New generation nanomaterials for water desalination: A
review, Desalination 451 (2019) 2–17. https://doi.org/10.1016/J.DESAL.2017.11.041.
[3] J.L. Prante, J.A. Ruskowitz, A.E. Childress, A. Achilli, RO-PRO desalination: An
integrated low-energy approach to seawater desalination, Appl Energy 120 (2014) 104–
114. https://doi.org/10.1016/j.apenergy.2014.01.013.
[4] M.A. Alaei Shahmirzadi, S.S. Hosseini, J. Luo, I. Ortiz, Significance, evolution and
recent advances in adsorption technology, materials and processes for desalination, water
softening and salt removal, J Environ Manage 215 (2018) 324–344.
https://doi.org/10.1016/j.jenvman.2018.03.040.
[5] A.N. Mabrouk, H.E.S. Fath, Technoeconomic study of a novel integrated thermal MSFMED desalination technology, Desalination 371 (2015) 115–125.
https://doi.org/10.1016/j.desal.2015.05.025.
[6] T. Mezher, H. Fath, Z. Abbas, A. Khaled, Techno-economic assessment and
environmental impacts of desalination technologies, (2010).
https://doi.org/10.1016/j.desal.2010.08.035.
[7] X. Su, T.A. Hatton, Redox-electrodes for selective electrochemical separations, Adv
Colloid Interface Sci 244 (2017) 6–20. https://doi.org/10.1016/j.cis.2016.09.001.
[8] R.B. Rakhi, W. Chen, H.N. Alshareef, Conducting polymer/carbon nanocoil composite
electrodes for efficient supercapacitors, J Mater Chem 22 (2012) 5177–5183.
https://doi.org/10.1039/C2JM15740C.
[9] M. Beke, T. Velempini, E. Prabakaran, K. Pillay, PREPARATION OF CARBONAEROGEL POLYPYRROLE COMPOSITE FOR DESALINATION BY HYBRID
CAPACITIVE DESALINATION METHOD, Arabian Journal of Chemistry (2022)
104412. https://doi.org/10.1016/j.arabjc.2022.104412.
[10] H. Zhuo, Y. Hu, Z. Chen, L. Zhong, Cellulose carbon aerogel/PPy composites for highperformance supercapacitor, Carbohydr Polym 215 (2019) 322–329.
https://doi.org/10.1016/J.CARBPOL.2019.03.101.
[11] J. Cao, Y. Wang, L. Wang, F. Yu, J. Ma, Na(3)V(2)(PO(4))(3)@C as Faradaic Electrodes
in Capacitive Deionization for High-Performance Desalination., Nano Lett 19 (2019)
823–828. https://doi.org/10.1021/acs.nanolett.8b04006.
[12] Q. Li, Y. Zheng, D. Xiao, T. Or, R. Gao, Z. Li, M. Feng, L. Shui, G. Zhou, X. Wang, Z.
Chen, Faradaic Electrodes Open a New Era for Capacitive Deionization, (2020).
https://doi.org/10.1002/advs.202002213.
[13] L. Guo, D. Kong, M.E. Pam, S. Huang, M. Ding, Y. Shang, C. Gu, Y. Huang, H.Y. Yang,
The efficient faradaic Li4Ti5O12@C electrode exceeds the membrane capacitive
desalination performance, J Mater Chem A Mater 7 (2019) 8912–8921.
https://doi.org/10.1039/C9TA00700H.
[14] C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive
deionization (CDI) - problems and possibilities: A review, Water Res 128 (2018) 314–
330. https://doi.org/10.1016/j.watres.2017.10.024.
[15] Q. Zhao, W. Wu, X. Wei, S. Jiang, T. Zhou, Q. Li, Q. Lu, Graphitic carbon nitride as
electrode sensing material for tetrabromobisphenol-A determination, Sens Actuators B
Chem 248 (2017) 673–681. https://doi.org/10.1016/j.snb.2017.04.002.
[16] P. Mary Rajaitha, K. Shamsa, C. Murugan, K.B. Bhojanaa, S. Ravichandran, K.
Jothivenkatachalam, A. Pandikumar, Graphitic carbon nitride nanoplatelets incorporated
titania based type-II heterostructure and its enhanced performance in photoelectrocatalytic water splitting, SN Appl Sci 2 (2020).
https://doi.org/10.1007/s42452-020-2190-9.
[17] N. Hebalkar, G. Arabale, S.R. Sainkar, S.D. Pradhan, I.S. Mulla, K. Vijayamohanan, P.
Ayyub, S.K. Kulkarni, Study of correlation of structural and surface properties with
electrochemical behaviour in carbon aerogels, n.d.
[18] T.C. Girija, M. V Sangaranarayanan, Polyaniline-based nickel electrodes for
electrochemical supercapacitors—Influence of Triton X-100, J Power Sources 159
(2006) 1519–1526. https://doi.org/https://doi.org/10.1016/j.jpowsour.2005.11.078.
[19] M.A.E.P.J.H.M.J. Heslop, Preparation and structure characterization of carbons prepared
from resorcinol-formaldehyde resin by CO2 activation Preparation and structure
characterization of carbons prepared from resorcinol-formaldehyde resin by CO 2
activation, (2007). https://doi.org/10.1007/s10450-007-9065-x.
[20] Y. Wang, B. Chang, D. Guan, Mesoporous activated carbon spheres derived from
resorcinol-formaldehyde resin with high performance for supercapacitors, (2015) 1783–
1791. https://doi.org/10.1007/s10008-015-2789-8.
[21] Z. Cao, C. Zhang, Z. Yang, Q. Qin, Z. Zhang, X. Wang, J. Shen, Preparation of carbon
aerogel electrode for electrosorption of copper ions in aqueous solution, Materials 12
(2019). https://doi.org/10.3390/ma12111864.
[22] E.O. Oseghe, S.O. Akpotu, E.T. Mombeshora, A.O. Oladipo, L.M. Ombaka, B.B. Maria,
A.O. Idris, G. Mamba, L. Ndlwana, O.S. Ayanda, A.E. Ofomaja, V.O. Nyamori, U.
Feleni, T.T.I. Nkambule, T.A.M. Msagati, B.B. Mamba, D.W. Bahnemann, Multidimensional applications of graphitic carbon nitride nanomaterials – A review, J Mol Liq
344 (2021) 117820. https://doi.org/10.1016/J.MOLLIQ.2021.117820.
[23] L. Xu, J. Zhang, J. Ding, T. Liu, G. Shi, X. Li, W. Dang, Y. Cheng, R. Guo, Pore structure
and fractal characteristics of different shale lithofacies in the dalong formation in the
western area of the lower yangtze platform, Minerals 10 (2020).
https://doi.org/10.3390/min10010072.
[24] T. Gao, H. Li, F. Zhou, M. Gao, S. Liang, M. Luo, Mesoporous carbon derived from
ZIF-8 for high efficient electrosorption, Desalination 451 (2019) 133–138.
https://doi.org/10.1016/J.DESAL.2017.06.021.
[25] S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J.S. Atchison, K.J. Keesman, S. Kaskel,
P.M. Biesheuvel, V. Presser, Direct prediction of the desalination performance of porous
carbon electrodes for capacitive deionization, Energy Environ Sci 6 (2013) 3700–3712.
https://doi.org/10.1039/c3ee42209g.
[26] S. Choi, B. Kim, J. Han, Integrated pretreatment and desalination by electrocoagulation
(EC)–ion concentration polarization (ICP) hybrid, Lab Chip 17 (2017) 2076–2084.
https://doi.org/10.1039/C7LC00258K.
[27] Y. Lu, X. Liu, W. Wang, J. Cheng, H. Yan, C. Tang, J.K. Kim, Y. Luo, Hierarchical,
porous CuS microspheres integrated with carbon nanotubes for high-performance
supercapacitors, Sci Rep 5 (2015). https://doi.org/10.1038/srep16584.
[28] A. Maghchiche, F.Z. Lakhal, A. Maghchiche, R. Nasri, A. Haouam, Composite Material
Polystyrene Activated Carbon for Water Purification Extraction and characterization of
polysaccharides from north Africa grass View project Use of plastic wastes for roads
construction in Algeria View project Composite Material Polystyrene Activated Carbon
for Water Purification, 2018. http://www.jmaterenvironsci.com.
[29] M. Zarei, Sensitive visible light-driven photoelectrochemical aptasensor for detection of
tetracycline using ZrO2/g-C3N4 nanocomposite, Sensors International 1 (2020).
https://doi.org/10.1016/j.sintl.2020.100029.[30] H. Yamada, K. Yoshii, M. Asahi, M. Chiku, Y. Kitazumi, Cyclic Voltammetry Part 1:
Fundamentals†, Electrochemistry 90 (2022).
https://doi.org/10.5796/ELECTROCHEMISTRY.22-66082.
[31] P. Simon, Y. Gogotsi, Capacitive Energy Storage in Nanostructured Carbon–Electrolyte
Systems, Acc Chem Res 46 (2013) 1094–1103. https://doi.org/10.1021/ar200306b.
[32] A. Mohammad, M.E. Khan, M.H. Cho, Sulfur-doped-graphitic-carbon nitride (S-gC3N4) for low cost electrochemical sensing of hydrazine, J Alloys Compd 816 (2020).
https://doi.org/10.1016/j.jallcom.2019.152522.
[33] P. Khajuria, R. Mahajan, S. Kumar, R. Prakash, Synthesis and optical properties of
magnesium zirconium oxide, in: AIP Conf Proc, American Institute of Physics Inc.,
2020. https://doi.org/10.1063/5.0001422.
[34] A. Bahloul, B. Nessark, E. Briot, H. Groult, A.