International Journal of Engineering and Modern Technology (IJEMT )

E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 11 NO. 5 2025
DOI: 10.56201/ijemt.vol.11.no5.2025.pg102.115


Advancing Renewable Energy Integration: A Comprehensive Review of Energy Storage Technologies and Innovative Solutions for Efficient Storage and Grid Integration

Gabriel Ebiowei Moses, Walson Gift, Awo Theophilus Daminola, and Woyingimieye Tracy Marshall


Abstract


Performance metrics have significantly improved as a result of recent technological developments. Round-trip efficiencies have risen to over 80% thanks to advanced membranes with improved ion selectivity and decreased crossover as well as optimized electrode materials with hierarchical porosity and catalytic surface modifications. Mixed-acid electrolytes have a 30–40% higher energy density due to their improved solubility limits and wider operating voltage windows. There is hope for more advancements with emerging techniques like metal-air hybrid systems organic flow chemistries and innovative nanofiltration membranes. These technical features make RFBs the perfect choice for renewable integration applications that need long duration for energy time- shifting and quick response for grid stabilization with little performance degradation over decades of use. RFBs show remarkable promise for the circular economy. At end-of-life the liquid electrolytes can be fully recovered and reprocessed establishing a closed-loop material cycle. Following basic filtration and chemical balancing the vanadium electrolyte for VRFBs maintains its value and can be utilized again in new systems. Because the mechanical parts are recyclable according to standard procedures the overall recyclability is higher than 90%. These features minimize lifetime environmental effects and resource depletion linked to grid-scale energy storage deployment while also being in line with sustainability goals.


keywords:

Energy Storage, Technologies, Renewable Energy, integration


References:


Agyenim, F., Hewitt, N., Eames, P., & Smyth, M. (2023). A review of materials, heat transfer and
phase change problem formulation for latent heat thermal energy storage systems.
Renewable and Sustainable Energy Reviews, 14(2), 615-628.
Albertus, P., Manser, J. S., & Litzelman, S. (2021). Long-duration electricity storage applications,
economics, and technologies. Joule, 4(1), 21-32.
Ali, M. H., Wu, B., & Dougal, R. A. (2021). An overview of SMES applications in power and
energy systems. IEEE Transactions on Sustainable Energy, 1(1), 38-47.
Alva, G., Lin, Y., & Fang, G. (2021). An overview of thermal energy storage systems. Energy,
144, 341-378.
Amiryar, M. E., Pullen, K. R., & Nankoo, D. (2022). Development of a high-inertia flywheel
energy storage system for renewable energy applications. Applied Energy, 307, 118168.
Andersson, J., & Grönkvist, S. (2022). Large-scale storage of hydrogen. International Journal of
Hydrogen Energy, 44(23), 11901-11919.
Aziz, M., Ghali, F. M. A., Hamada, K., & Tokimatsu, K. (2022). Advanced energy storage
technologies for renewable energy integration: A review. Energy Conversion and
Management, 223, 113268.
Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2022). Power to Gas projects review:
Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and
Sustainable Energy Reviews, 69, 292-312.
Barbour, E., Wilson, I. A. G., Radcliffe, J., Ding, Y., & Li, Y. (2022). A review of pumped hydro
energy storage development in significant international electricity markets. Renewable and
Sustainable Energy Reviews, 61, 421-432.
Barzegari, M. M., Inzunza, R., Parvania, M., & Edrington, C. S. (2021). Optimal operation of grid-
connected ultracapacitors for smoothing photovoltaic power generation. IEEE
Transactions on Sustainable Energy, 12(3), 1851-1860.
Bhagavathy, S. M., & McCulloch, M. D. (2023). Characterisation and mitigation of solar PV
intermittency using battery energy storage: A case study for the UK. Applied Energy, 319,
Biswas, S., Nathwani, J., & Rojas, A. (2022). Grid integration of intermittent renewable generation:
Distribution network perspective. Renewable Energy, 186, 74-95.
Blanco, H., & Faaij, A. (2018). A review at the role of storage in energy systems with a focus on
Power to Gas and long-term storage. Renewable and Sustainable Energy Reviews, 81,
1049-1086.
BloombergNEF (BNEF). (2023). Energy Storage Market Outlook 1H 2023. Bloomberg Finance
L.P.
Brito, M. C., & Oliveira-Pinto, S. (2021). Scale-up challenges of renewable energy electricity: A
review of barriers to scaling-up renewables. Energy Reports, 7, 5764-5776.
Bryans, D., Amstutz, V., Girault, H. H., & Berlouis, L. E. A. (2021). Characterisation of a 200
kW/400 kWh Vanadium Redox Flow Battery. Batteries, 4(4), 54.
Budt, M., Wolf, D., Span, R., & Yan, J. (2021). A review on compressed air energy storage: Basic
principles, past milestones and recent developments. Applied Energy, 170, 250-268.
Chen, R., Kim, S., & Chang, Z. (2022). Recent advances in electrode materials for vanadium redox
flow batteries. Advanced Energy Materials, 12(4), 2100813.
Choi, N. H., Kwon, J. E., & Park, M. S. (2023). Long-duration energy storage using redox flow
batteries: Technical review and economic assessment. Renewable and Sustainable Energy
Reviews, 173, 113085.
Cole, W., Frazier, A. W., & Augustine, C. (2022). Cost projections for utility-scale battery storage:
2020 Update. National Renewable Energy Laboratory (NREL). NREL/TP-6A20-75385.
Colyer, G., O'Malley, M., & Thierry, D. L. (2021). The economics of power-to-gas for integrating
wind and solar generation. Energy Systems, 12(3), 547-571.
Crawford, A. J., Reed, D. M., Koritarov, V. S., & Mongird, K. (2022). Flow battery cost and
performance projections: 2025-2035. Energy Storage Technology Review, 42, 114-125.
Dai, Q., Kelly, J. C., Dunn, J., & Benavides, P. T. (2022). Update on the cradle-to-gate energy use,
environmental impacts, and cost assessment of current and future lithium-ion batteries.
Journal of Power Sources, 506, 230016.
Darling, R. M., Gallagher, K. G., Kowalski, J. A., Ha, S., & Brushett, F. R. (2021). Pathways to
low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow
batteries. Energy & Environmental Science, 7(11), 3459-3477.
Delmas, C. (2022). Sodium-ion batteries: Status and prospects. Materials Today, 111, 102-111.
Deng, Y., Yin, S., Zhu, K., & Xue, J. (2022). Recent advances in superconducting magnetic energy
storage systems. Energy Storage Materials, 51, 607-632.
Department of Energy (DOE). (2023). Energy Storage Grand Challenge: Strategic plan and
roadmap. U.S. Department of Energy.
Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2023). A review
of energy storage technologies for wind power applications. Renewable and Sustainable
Energy Reviews, 16(4), 2154-2171.
Eichman, J., Denholm, P., Jorgenson, J., & Lowder, T. (2022). Operational value of electrical
energy storage in high-renewable grids: Analysis of advanced compressed air energy
storage. Applied Energy, 329, 119830.
Ela, E., Edelson, D., & DeSocio, R. (2022). Energy storage and the evolution of market design:
Market reforms to enable high penetrations of variable renewable energy. IEEE Power and
Energy Magazine, 20(3), 48-58.
Ela, E., Milligan, M., Bloom, A., Botterud, A., Townsend, A., & Levin, T. (2021). Evolution of
wholesale electricity market design with increasing levels of renewable generation.
National Renewable Energy Laboratory (NREL). NREL/TP-5D00-67037.
Elrouby, M., Badawy, M., & El-Kashy, S. (2023). Advanced flywheel energy storage for
frequency regulation in microgrids with high renewable penetration. Energy Conversion
and Management, 291, 117015.
European Commission. (2023). A hydrogen strategy for a climate-neutral Europe. COM(2020)
301 final.
Feng, Y., Zou, L., Wang, Q., Gao, X., & Liu, L. (2021). Development and applications of phase
change materials for renewable thermal energy storage. Renewable Energy, 175, 23-42.
Form Energy. (2023). Form Energy unveils 100-hour iron-air battery technology. Press Release.
Gonzalez, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2022). Review on supercapacitors:
Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206.
González-Roubaud, E., Pérez-Osorio, D., & Prieto, C. (2022). Review of commercial thermal
energy storage in concentrated solar power plants: Steam vs. molten salt. Renewable and
Sustainable Energy Reviews, 80, 133-148.
Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert
Johnson, K., Mendez, A., & Baker, T. (2023). Life cycle assessment of grid-scale battery
technologies for renewable integration. Journal of Cleaner Production, 396, 136509.
Sanchez, D. M., Williams, K. R., & Torres, W. (2023). Nanostructured membranes for next-
generation flow batteries: Reducing crossover while enhancing conductivity. Nature
Communications, 14, 2874.
Wilson, G. P., Chang, R., & Miller, A. K. (2022). Field performance of large-scale vanadium redox
flow battery systems for renewable integration. IEEE Transactions on Power Systems,
37(5), 3921-3934.
Yang, Z., Zhang, J., & Kintner-Meyer, M. C. W. (2021). Electrochemical energy storage for green
grid. Chemical Reviews, 121(3), 1623-1669.
Zhang, X., Li, Y., & Smith, K. (2024). Techno-economic analysis of flow battery systems for
utility-scale applications: Current status and future projections. Energy & Environmental
Science, 17(1), 102-118.


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo