International Journal of Engineering and Modern Technology (IJEMT )
E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 11 NO. 4 2025
DOI: 10.56201/ijemt.vol.11.no4.2025.pg266.303
Fatoba, Toyosi Mercy; Oyeyemi, Dare Azeez; Oluyele, Sunday Anthony; & Adeniyi, Victor Oluwatobi.
This review paper explores the vital role played by the programming language Python in Artificial Intelligence (AI) and Machine Learning (ML). It will discuss the origin of AI and ML, the first programming language used for it, and its bottlenecks will be made known. There will also be an exposition on the emergence of Python, its elements, and the comparison between Python and LISP. The adoption and integration of Python into AI and ML will be considered, and the advanced components of Python and their uses in AI and ML will also be discussed. The trajectory of AI and ML with Python and the game-changing benefits of using Python in AI and ML will be assessed. Suggestions will be given on what should be improved in Python to improve AI and ML.
AI; ML; Python; Automation; Data analytics.
Abraham, H., et al. (2019). Qiskit: An Open-source Framework for Quantum Computing. Qiskit
Documentation.
Adetiba, E., John T.M., Akinrinmade, A.A., Moninuola, F.S. , Akintade O.O., and Badejo J.A.
(2021). Evolution of artificial intelligence languages – a systematic literature review.
Journal of Computer Science. 17(11), 1157-1171.
http://dx.doi.org/10.3844/jcssp.2021.1157.1171
Alex Ryabtsev. (2024). 8 Reasons Why Python is Good for AI and ML. Retrieved March 7, 2025,
from https://djangostars.com/blog/why-python-is-good-for-artificial-intelligence-andmachine-learning/
Ali, M. (2015). Python data types explained: A beginner’s guide. DataCamp. Retrieved March 24,
2025, from https://www.datacamp.com/blog/python-data-types
Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., & Zhang, Y. (2019).
AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM
Journal of Research and Development, 63(4/5),.1-2
https://doi.org/10.1147/jrd.2019.2942287
Bhargavi. (2022, October 25). Artificial intelligence history, stages, types, and domains. Retrieved
from https://sailssoftware.com/artificial-intelligence/
Blackwell, A. (2024). Moral Codes: Designing Alternatives to AI.
https://doi.org/10.7551/mitpress/14872.003.0012
Blackwell, Alan. (2024). Explanation and transparency: Beyond no-code/low-code. In Moral
Codes (pp. 99–116). The MIT Press. Retrieved from
http://dx.doi.org/10.7551/mitpress/14872.003.0010
Borretti, F., & Nathan, P. (2024). Using Emacs as an IDE. Retrieved from
https://github.com/LispCookbook/cl-cookbook/blob/master/emacs-ide.md website:
https://lispcookbook.github.io/cl-cookbook/emacs-ide.html
Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., … Anderljung, M.
(2020, April 15). Toward trustworthy AI development: Mechanisms for supporting
verifiable claims. Retrieved April 23, 2025, from arXiv.org website:
https://arxiv.org/abs/2004.07213
Cao, S., Zeng, Y., Yang, S., & Cao, S. (2021). Research on Python data visualization technology.
Journal of Physics: Conference Series, 1757(1), 012122. https://doi.org/10.1088/1742-
6596/1757/1/012122
Chatterjee, S. (2024, February 28). Master float in Python: The ultimate guidebook to precision.
Emeritus. Retrieved March 24, 2025, from https://emeritus.org/in/learn/float-in-python/
Chen, Y., & Huang, L. (2025). Conditional statements. Retrieved from Springer, pp 133–152
website: https://link.springer.com/chapter/10.1007/978-981-97-8788-3_4
Dalcin, L. D., Paz, R. R., Kler, P. A., & Cosimo, A. (2011). Parallel distributed computing using
Python. Advances in Water Resources, 34(9), 1124–1139.
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
Dergano F. (2023). Python's Role in Artificial Intelligence and Machine Learning. Retrieved
February 27, 2025, from https://raccomandino.medium.com/pythons-role-in-artificialintelligence-and-machine-learning-b6b97843a307
Gaddis, T. (2024). Step-by-step solution. Vaia. Retrieved from https://www.vaia.com/enus/textbooks/computer-science/starting-out-with-c-from-control-structures-through-objects-8-edition/chapter-5/problem-19-the-statement-or-block-that-is-repeated-isknown- (pp. )
Gangopadhyay, S. (2025). The asynchronous IO revolution: How Python is changing the game.
GUVI. https://www.guvi.in/blog/the-asynchronous-io-revolution-how-python-ischanging-the-game/ (Retrieved April 12, 2025)
GeeksforGeeks. (2024). Why Python is Called Interpreted Language. GeeksforGeeks.
https://www.geeksforgeeks.org/why-python-is-called-interpretedlanguage/Geeksforgeeks (2025). Python Operators. Retrieved from March 25, 2025, from
https://www.geeksforgeeks.org/python-operators
Ghimire, D. (2020). Comparative study on Python web frameworks: Flask and Django.
https://www.theseus.fi/bitstream/handle/10024/339796/Ghimire_Devndra.pdf?sequence=
2
Google Quantum AI Team. (2020). Cirq: A Python Framework for Creating, Editing, and Invoking
Noisy Intermediate Scale Quantum (NISQ) Circuits. Cirq Documentation.
Gupta, A. (2023). Machine Learning with Python; Retrieved from
https://medium.com/@aaditgupta06/machine-learning-with-python-aedc5353a72a
Gupta, A. (2020, September 30). 20 most popular Python IDEs in 2024: Code like a pro.
Simplilearn. Retrieved from https://www.simplilearn.com/tutorials/pythontutorial/python-ide
Gupta, N. (2023, March 27). Meta-programming in Python: Unleashing the power of decorators,
metaclasses, and introspection. DataScience with Python?—?NishKoder. Retrieved from
https://medium.com/nishkoder/meta-programming-in-python-unleashing-the-power-ofdecorators-metaclasses-and-introspection-e1274c753dc1
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present,
and Future of Artificial Intelligence. California Management Review, 61(4), 5–14.
https://doi.org/10.1177/0008125619864925
Ihaka, R., & Lang, D. T. (2008, January 1). Back to the Future: Lisp as a base for a statistical
computing system. (pp. 5-6)
https://www.researchgate.net/publication/227019917_Back_to_the_Future_Lisp_as_a_B
ase_for_a_Statistical_Computing_System
Ingerman, A., & Ostrowski, K. (2019). TensorFlow Federated: Machine Learning on
Decentralized Data. TensorFlow Blog.
Jain, A. (2024). Embracing abstraction: A dive into abstract classes in Python. Medium.
https://medium.com/@abhishekjainindore24/embracing-abstraction-a-dive-into-abstractclasses-in-python-0faf6d83948d (Retrieved April 12, 2025)
Jenifar. (2023). Python exec vs eval. Medium. https://medium.com/@brusooo27/python-exec-vseval-ea949931ee8f (Retrieved April 12, 2025)
Jin, H., Song, Q., & Hu, X. (2019). Auto-Keras: An efficient neural architecture search system.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. New York, NY, USA: ACM. Retrieved from
http://dx.doi.org/10.1145/3292500.3330648 (pp. 1947)
Karabulut, N., & Akyüz, Y. (2023). A Comparison of RPA Tool and Python Programming
Language for a BOM Digitization Project in Automobile Industry. Yönetim Bili?im
Sistemleri Dergisi, 9(2), 15-26. http://dergipark.gov.tr/ybsKhaled, M. (2023, December 7). Python programming language: A comprehensive overview.
Retrieved from ProfileTree Web Design and Digital Marketing website:
https://profiletree.com/python-programming-language-comprehensive-overview/
Khare, Y. (2024). Use cases of Python context manager. Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2024/06/python-context-manager/ (Retrieved
April 12, 2025)
Kuchling, A. M. & Zadka, M. (October 2000). "What's New in Python 2.0". Python Software
Foundation. Retrieved November 20, 2024, from
https://docs.python.org/3/whatsnew/2.0.html
Kuhlman, D. (September 2011). A Python Book: Beginning Python, Advanced Python, and
Python Exercises. Section 1.1. Retrieved November 20, 2024, from
https://www.academia.edu/resource/work/34001890
Kluyver Thomas, Ragan-Kelley Benjamin, Perez Fernando, Granger Brian, Bussonnier Matthias,
Frederic Jonathan, … Jupyter Development Team. (2016). Jupyter Notebooks-; a
publishing format for reproducible computational workflows. In Positioning and Power in
Academic Publishing: Players, Agents, and Agendas (pp.87-90). IOS Press.
https://doi.org/10.3233/978-1-61499-649-1-87
Kumar, R. (2024). Power of LISP for language-oriented programming. Retrieved from
https://industrywired.com/power-of-lisp-for-language-oriented-programming/
Kumar, N. (2018). Python modules tutorial: Importing, writing, and using them. DataCamp.
Retrieved from https://www.datacamp.com/tutorial/modules-in-python
Lily Hulatt & Grabriel Frietas, (2024). Programming Paradigms. Retrived from
https://www.studysmarter.co.uk/explanations/computer-science/computerprogramming/programming-paradigms/
Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A review of
machine learning interpretability methods. Entropy, 23(1), 18.
https://doi.org/