International Journal of Engineering and Modern Technology (IJEMT )
E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 11 NO. 4 2025
DOI: 10.56201/ijemt.vol.11.no5.2025.pg1.10
Ekeoma, Chukwuma George, Nwaogu Chibuzo Jackie, Esenamunjor, Clement, Temidayo
Accurate modeling of wind velocity distribution is essential for optimizing wind energy generation and improving resource assessments. This study presents a predictive stochastic model utilizing the Weibull distribution, with its parameters optimized using the Particle Swarm Optimization (PSO) algorithm—a robust metaheuristic technique. Wind speed data collected over a one-year period in the Aba region were analyzed. The PSO-based estimation significantly outperformed traditional methods like Maximum Likelihood Estimation (MLE), yielding lower error margins and higher correlation with empirical data. The optimized model achieved a high coefficient of determination (R² = 0.972) and a reduced Root Mean Square Error (RMSE = 0.0087), confirming its effectiveness. The study demonstrates the potential of PSO-enhanced models in supporting reliable wind energy resource evaluation and system design.
Wind Speed Modeling, Weibull Distribution, Particle Swarm Optimization, Metaheuristics, Renewable Energy, Stochastic Modeling
Akpinar, E. K., & Akpinar, S. (2004). An assessment on seasonal analysis of wind energy
characteristics and wind turbine characteristics. Energy Conversion and Management,
45(9–10), 1529–1542. https://doi.org/10.1016/j.enconman.2003.09.015
Almeida, J. G. de, & Gadelha, T. S. (2016). Parameter estimation of Weibull distribution for wind
energy assessment using metaheuristic algorithms. Renewable Energy, 89, 213–223.
https://doi.org/10.1016/j.renene.2015.11.063
Carta, J. A., Ramírez, P., & Velázquez, S. (2009). A review of wind speed probability distributions
used in wind energy analysis: Case studies in the Canary Islands. Renewable and
Sustainable Energy Reviews, 13(5), 933–955. https://doi.org/10.1016/j.rser.2008.05.005
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics, 26(1), 29–41. https://doi.org/10.1109/3477.484436
Gao, Y., & Li, Y. (2010). A comparison of methods for estimating Weibull parameters for wind
energy
applications.
Energy
Conversion
and
Management,
52(2),
741–745.
https://doi.org/10.1016/j.enconman.2010.08.015
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.
Justus, C. G., Hargraves, W. R., Mikhail, A., & Graber, D. (1978). Methods for estimating wind
speed frequency distributions. Journal of Applied Meteorology, 17(3), 350–353.
https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2
Kalogirou, S. A. (2003). Artificial intelligence in renewable energy applications in buildings.
International
Journal
of
Low-Carbon
Technologies,
35(4),
381–393.
https://doi.org/10.1016/S0306-2619(03)00077-2
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 -
International
Conference
on
Neural
Networks,
4,
1942–1948.
https://doi.org/10.1109/ICNN.1995.488968
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
Kusiak, A., Zheng, H., & Song, Z. (2009). Short-term prediction of wind farm power: A data
mining approach. IEEE Transactions on Energy Conversion, 24(1), 125–136.
https://doi.org/10.1109/TEC.2008.2006552
Mohandes, M. A., Rehman, S., & Halawani, T. O. (2004). Estimation of wind speed profile using
adaptive
neuro-fuzzy
inference
system
(ANFIS).
Energy,
29(1),
69–77.
https://doi.org/10.1016/S0360-5442(03)00156-9
Sahu, L., Dahiya, R., & Verma, N. (2013). Parameter estimation of Weibull distribution using
metaheuristic techniques for wind energy applications. International Journal of Energy
and Environment, 4(5), 839–848.
Seguro, J. V., & Lambert, T. W. (2000). Modern estimation of the parameters of the Weibull wind
speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial
Aerodynamics, 85(1), 75–84. https://doi.org/10.1016/S0167-6105(99)00122-1
Yang, H., Lu, L., & Zhou, W. (2019). A novel hybrid model for wind speed prediction using a
combined
GA-PSO
algorithm.
Renewable
Energy,
132,
1375–1386.
https://doi.org/10.1016/j.renene.2018.09.041