International Journal of Engineering and Modern Technology (IJEMT )

E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 11 NO. 5 2025
DOI: 10.56201/ijemt.vol.11.no5.2025.pg1.10


Metaheuristic-Based Predictive Modelling of Wind Velocity Distributions

Ekeoma, Chukwuma George, Nwaogu Chibuzo Jackie, Esenamunjor, Clement, Temidayo


Abstract


Accurate modeling of wind velocity distribution is essential for optimizing wind energy generation and improving resource assessments. This study presents a predictive stochastic model utilizing the Weibull distribution, with its parameters optimized using the Particle Swarm Optimization (PSO) algorithm—a robust metaheuristic technique. Wind speed data collected over a one-year period in the Aba region were analyzed. The PSO-based estimation significantly outperformed traditional methods like Maximum Likelihood Estimation (MLE), yielding lower error margins and higher correlation with empirical data. The optimized model achieved a high coefficient of determination (R² = 0.972) and a reduced Root Mean Square Error (RMSE = 0.0087), confirming its effectiveness. The study demonstrates the potential of PSO-enhanced models in supporting reliable wind energy resource evaluation and system design.


keywords:

Wind Speed Modeling, Weibull Distribution, Particle Swarm Optimization, Metaheuristics, Renewable Energy, Stochastic Modeling


References:


Akpinar, E. K., & Akpinar, S. (2004). An assessment on seasonal analysis of wind energy
characteristics and wind turbine characteristics. Energy Conversion and Management,
45(9–10), 1529–1542. https://doi.org/10.1016/j.enconman.2003.09.015
Almeida, J. G. de, & Gadelha, T. S. (2016). Parameter estimation of Weibull distribution for wind
energy assessment using metaheuristic algorithms. Renewable Energy, 89, 213–223.
https://doi.org/10.1016/j.renene.2015.11.063
Carta, J. A., Ramírez, P., & Velázquez, S. (2009). A review of wind speed probability distributions
used in wind energy analysis: Case studies in the Canary Islands. Renewable and
Sustainable Energy Reviews, 13(5), 933–955. https://doi.org/10.1016/j.rser.2008.05.005
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics, 26(1), 29–41. https://doi.org/10.1109/3477.484436
Gao, Y., & Li, Y. (2010). A comparison of methods for estimating Weibull parameters for wind
energy applications. Energy Conversion and Management, 52(2), 741–745.
https://doi.org/10.1016/j.enconman.2010.08.015
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.
Justus, C. G., Hargraves, W. R., Mikhail, A., & Graber, D. (1978). Methods for estimating wind
speed frequency distributions. Journal of Applied Meteorology, 17(3), 350–353.
https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2
Kalogirou, S. A. (2003). Artificial intelligence in renewable energy applications in buildings.
International Journal of Low-Carbon Technologies, 35(4), 381–393.
https://doi.org/10.1016/S0306-2619(03)00077-2
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 -
International Conference on Neural Networks, 4, 1942–1948.
https://doi.org/10.1109/ICNN.1995.488968
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
Kusiak, A., Zheng, H., & Song, Z. (2009). Short-term prediction of wind farm power: A data
mining approach. IEEE Transactions on Energy Conversion, 24(1), 125–136.
https://doi.org/10.1109/TEC.2008.2006552
Mohandes, M. A., Rehman, S., & Halawani, T. O. (2004). Estimation of wind speed profile using
adaptive neuro-fuzzy inference system (ANFIS). Energy, 29(1), 69–77.
https://doi.org/10.1016/S0360-5442(03)00156-9
Sahu, L., Dahiya, R., & Verma, N. (2013). Parameter estimation of Weibull distribution using
metaheuristic techniques for wind energy applications. International Journal of Energy
and Environment, 4(5), 839–848.
Seguro, J. V., & Lambert, T. W. (2000). Modern estimation of the parameters of the Weibull wind
speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial
Aerodynamics, 85(1), 75–84. https://doi.org/10.1016/S0167-6105(99)00122-1
Yang, H., Lu, L., & Zhou, W. (2019). A novel hybrid model for wind speed prediction using a
combined GA-PSO algorithm. Renewable Energy, 132, 1375–1386.
https://doi.org/10.1016/j.renene.2018.09.041


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo