References
Ekong, A. & Udo, E. & Ekong, O. & Inyang, S. (2023). Machine Learning based Model for the Prediction of Fasting Blood Sugar Level towards Cardiovascular Disease Control for the Enhancement of Public Health. International Journal of Computer Applications. 5-12. 10.5120/ijca2023922622. Robinson, L., & Kumar, T. (2023). Pneumonia and child mortality: Challenges in LMICs. Journal of Computer Sciences, 49(1), 67–79. Smith, J., & Johnson, T. (2023). Seasonal epidemiology of Asthma and other respiratory diseases. Journal of Computer Sciences, 49(2), 220–233. Clark, A., & Kim, J. (2023). Environmental determinants of respiratory illness severity: A computational approach. Journal of Computational Medicine, 12(3), 315–329. Gupta, R., Kumar, S., & Patel, H. (2023). Global disparities in respiratory health outcomes. International Journal of Digital Health, 8(2), 140–157. Huang, X., Martinez, T., & Cheng, L. (2022). Genetic markers and their role in respiratory disease progression. Computing in Biology and Medicine, 145, 105456. Lee, D., & Harris, P. (2023). Addressing antimicrobial resistance in respiratory infections. Journal of Bioinformatics and Medical Engineering, 17(4), 489–502. Nguyen, T., & Patel, S. (2024). Seasonal trends in respiratory disease severity. Journal of Environmental Informatics, 13(1), 101–115. Park, H., Zhao, L., & Zhang, M. (2023). The role of machine learning in predicting seasonal respiratory outbreaks. AI in Public Health, 6(2), 240–260. Smith, A., Robinson, L., & Kumar, P. (2024). Emerging technologies in respiratory disease modeling. Advances in Medical Computing, 19(1), 55–70. Zhao, X., & Zhang, W. (2024). Viral load as a predictor of severe respiratory outcomes. Journal of Computational Epidemiology, 15(3), 210–225. Albrecht, S., Broderick, D., Dost, K. et al. Forecasting severe respiratory disease hospitalizations using machine learning algorithms. BMC Med Inform Decis Mak 24, 293 (2024). Algarni, A. (2024). Smart detection: using supervised machine learning for respiratory diseases. Advances and Applications in Statistics, 91(12), 1607–1625. Patil, P., Narawade, V. RESP dataset construction with multiclass classification in respiratory disease infection detection using machine learning approach. Int. j. inf. tecnol. (2024). Kassaw, A., Bekele, G., Kassaw, A.K. et al. Prediction of acute respiratory infections using machine learning techniques in Amhara Region, Ethiopia. Sci Rep 14, 27968 (2024). Huang C, Ha X, Cui Y and Zhang H (2024) A study of machine learning to predict NRDS severity based on lung ultrasound score and clinical indicators. Front. Med. 11:1481830. doi: 10.3389/fmed.2024.1481830 Kassaw, A., Bekele, G., Kassaw, A.K. et al. Prediction of acute respiratory infections using machine learning techniques in Amhara Region, Ethiopia. Sci Rep 14, 27968 (2024). Kumar, R., Maheshwari, S., Sharma, A. et al. Ensemble learning-based early detection of Asthma disease. Multimed Tools Appl 83, 5723–5743 (2024). Centers for Disease Control and Prevention [CDC]. (2020). How COVID-19 Spreads. Retrieved from https://www.cdc.gov. Cohen, J., Tohme, R. A., & Qin, X. (2017). Health effects of urbanization and social structure on infectious disease transmission. Journal of Infectious Disease Research, 23(3), 102- Dubé, E., Laberge, C., Guay, M., Bramadat, P., Roy, R., & Bettinger, J. A. (2021). Vaccine hesitancy: An overview. Human Vaccines & Immunotherapeutics, 9(8), 1763–1773. Fauci, A. S., Lane, H. C., & Redfield, R. R. (2020). Covid-19 – Navigating the Uncharted. New England Journal of Medicine, 382(13), 1268–1269. Grohskopf, L. A., Alyanak, E., Broder, K. R., Blanton, L. H., Fry, A. M., & Jernigan, D. B. (2019). Prevention and Control of Seasonal Asthma with Vaccines: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recommendations and Reports, 68(3), 1-21. Moriyama, M., Hugentobler, W. J., & Iwasaki, A. (2020). Seasonality of respiratory viral infections. Annual Review of Virology, 7(1), 83-101. Omer, S. B., Betsch, C., & Leask, J. (2019). Vaccination hesitancy and health care providers. Pediatrics, 144(5), e20190345. Ranney, M. L., Griffeth, V., & Jha, A. K. (2020). Critical supply shortages—The need for ventilators and personal protective equipment during the COVID-19 pandemic. New England Journal of Medicine, 382(18), e41. Salmon, D. A., Dudley, M. Z., Glanz, J. M., & Omer, S. B. (2015). Vaccine hesitancy: Causes, consequences, and a call to action. American Journal of Preventive Medicine, 49(6), S391-S398. World Health Organization [WHO]. (2019). Ten threats to global health in 2019. Retrieved from https://www.who.int. Centers for Disease Control and Prevention [CDC]. (2020). How COVID-19 Spreads. Retrieved from https://www.cdc.gov. Moriyama, M., Hugentobler, W. J., & Iwasaki, A. (2020). Seasonality of respiratory viral infections. Annual Review of Virology, 7(1), 83-101. Ranney, M. L., Griffeth, V., & Jha, A. K. (2020). Critical supply shortages—The need for ventilators and personal protective equipment during the COVID-19 pandemic. New England Journal of Medicine, 382(18), e41. World Health Organization [WHO]. (2021). COVID-19 Pandemic Response. Retrieved from https://www.who.int. Ahmed I. Taloba, R.T. Matoog, Detecting respiratory diseases using machine learning-based pattern recognition on spirometry data, Alexandria Engineering Journal,Volume 113,2025,Pages 44-59,. Smith, J., & Johnson, T. (2023). Epidemiological trends in respiratory illnesses: The role of predictive modeling. Journal of Computer Sciences, 49(3), 221–234. Miller, R., Zhang, H., & Lee, C. (2023). Machine learning in the surveillance of seasonal Asthma outbreaks. Journal of Computer Sciences, 48(2), 178–190. Harris, D., Gupta, S., & Robinson, L. (2022). Socioeconomic impacts of contagious respiratory diseases: A computational approach. Journal of Computer Sciences, 47(5), 334–347. Nguyen, K., & Park, S. (2023). The integration of health informatics in managing COVID-19 and beyond. Journal of Computer Sciences, 50(1), 11–25. Robinson, A., & Zhang, M. (2024). Addressing inequities in respiratory illness interventions through machine learning. Journal of Computer Sciences, 51(4), 402–416. Gupta, S., & Zhang, M. (2022). Socioeconomic determinants of respiratory illness burden in LMICs: A computational approach. Journal of Computer Sciences, 48(3), 201–213. Lee, J., & Patel, K. (2022). Global trends in RSV epidemiology and healthcare implications. Journal of Computer Sciences, 47(5), 287–299. Miller, R., Nguyen, K., & Park, S. (2023). COVID-19 and its impact on the epidemiology of respiratory illnesses. Journal of Computer Sciences, 50(2), 132–145. Park, H., & Harris, D. (2024). Predictive modeling in respiratory illness surveillance: Applications and outcomes. Journal of Computer Sciences, 51(4), 405–418. Ekong, A., Ekong B., and Edet A. (2022). Supervised machine learning model for effective classification of patients with covid-19 symptoms based on bayesian belief network. Researchers Journal of Science and Technology, 2(1), 27-33. Ekong, B., Ekong, O., Silas, A., Edet, A. E., & William, B. (2023). Machine Learning Approach for Classification of Sickle Cell Anemia in Teenagers Based on Bayesian Network. Journal of Information Systems and Informatics, 5(4), 1793-1808. Edet, A. E., & Ansa, G. O. (2023). Machine learning enabled system for intelligent classification of host-based intrusion severity. Global Journal of Engineering and Technology Advances, 16(03), 041-050. Ebong, O., Edet, A., Uwah, A., & Udoetor, N. (2024). Comprehensive Impact Assessment of Intrusion Detection and Mitigation Strategies Using Support Vector Machine Classification. Mbaji, I.N. & Ebirim, P.U. (2015). Quality assurance in teacher education: inh