References
Alhabib, A. A., Alasiri, A. F., Alharbi, M. B., Ahmad, S., & Eljialy, A. E. M. (2024). Credit card fraud detection using Random Forest and K-Nearest Neighbors (KNN) algorithms. In Proceedings of the 5th International Conference on Computing, Communication, and Cyber-Security (IC4S) (pp. 383–395). Springer. https://doi.org/10.1007/978-981-97- 7371-8_30 Kaul, A., Chhabra, M., Sachdeva, P., Jain, R., & Nagrath, P. (2021). Credit card fraud detection using different ML and DL techniques. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3747486 Zhang, Y., Li, X., & Liu, Y. (2023). Federated learning model for credit card fraud detection with data imbalance. Journal of Ambient Intelligence and Humanized Computing, 14, 1– https://doi.org/10.1007/s00521-023-09410-2 Abraham, N. (2024). Credit card fraud detection using machine learning and deep learning. GitHub. https://github.com/NissyAbrahamA/credit-card-fraud-detection Rzayeva, D., & Malekzadeh, S. (2022). A combination of deep neural networks and K-Nearest Neighbors for credit card fraud detection. arXiv Preprint, arXiv:2205.15300. https://doi.org/10.48550/arXiv.2205.15300 Talukder, M., Hossen, R., Uddin, M. A., Uddin, M. N., & Acharjee, U. K. (2024). Securing transactions: A hybrid dependable ensemble machine learning model using IHT-LR and grid search. arXiv Preprint, arXiv:2402.14389. https://doi.org/10.48550/arXiv.2402.14389 Zhu, M., Zhang, Y., Gong, Y., Xu, C., & Xiang, Y. (2024). Enhancing credit card fraud detection: A neural network and SMOTE integrated approach. arXiv preprint arXiv:2405.00026. https://doi.org/10.48550/arXiv.2405.00026 Verma, S., & Dhar, J. (2024). Credit card fraud detection: A deep learning approach. arXiv preprint arXiv:2409.13406. https://doi.org/10.48550/arXiv.2409.13406 Abdul Salam, M., Fouad, K. M., Elbably, D. L., & Elsayed, S. M. (2024). Federated learning model for credit card fraud detection with data balancing techniques. Neural Computing and Applications, 36(8), 6231–6256. https://doi.org/10.1007/s00521-023-09410-2 Kim, J. S., & Park, T. W. (2023). A comparative study on credit card fraud detection using machine learning techniques. Journal of Finance and Data Science, 9(1), 115–128. https://doi.org/10.1016/j.jfds.2022.10.001 Khan, M. A., Naeem, M., & Iqbal, Z. (2023). A hybrid deep learning approach for credit card fraud detection using convolutional neural networks and decision trees. Expert Systems with Applications, 207, 118062. https://doi.org/10.1016/j.eswa.2023.118062 Liu, J., Wang, H., & Li, Q. (2023). Secure transaction systems using ensemble machine learning for credit card fraud detection. Future Generation Computer Systems, 148, 583– https://doi.org/10.1016/j.future.2023.08.011 Patel, A., Sharma, K., & Mishra, P. (2024). Random Forest and KNN-based hybrid model for enhanced credit card fraud detection. In Proceedings of the 6th International Conference on Advances in Computing and Data Sciences (pp. 150–162). Springer. https://doi.org/10.1007/978-981-99-7078-9_12 Cheng, H., Li, X., & Zhang, J. (2023). Federated learning for imbalanced credit card fraud detection using adaptive sampling techniques. Journal of Applied Artificial Intelligence, 45(5), 843–861. https://doi.org/10.1080/08839514.2023.1245123 Wong, T. K., & Chan, A. C. (2022). Comparative analysis of machine learning and deep learning models for credit card fraud detection. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3964578 Roy, S., & Jain, S. (2023). An ensemble learning approach for real-time credit card fraud detection. Journal of Intelligent & Fuzzy Systems, 45(3), 2675–2685. https://doi.org/10.3233/JIFS-223461 Nguyen, T. D., Pham, H. Q., & Bui, N. T. (2022). Credit card fraud detection using LSTM and autoencoder-based deep learning models. Procedia Computer Science, 201, 1045–1052. https://doi.org/10.1016/j.procs.2022.04.135 Ahmed, K., Khan, M. S., & Rehman, S. U. (2023). Credit card fraud detection using XGBoost and deep neural networks: A hybrid model approach. Journal of Financial Crime, 30(2), 523–536. https://doi.org/10.1108/JFC-09-2022-0208 Sharma, A., & Patel, R. (2023). Comparative study of Naive Bayes and deep learning techniques for credit card fraud detection. Journal of Intelligent Systems, 32(4), 765–780. https://doi.org/10.1515/jisys-2023-0098 Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-Guelton, L., & Caelen, O. (2021).. Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234–245. https://doi.org/10.1016/j.eswa.2021.112097 Lin, J., Liu, X., & Zhang, D. (2021). Research on the KNN algorithm for detecting fraudulent credit card transactions. Journal of Intelligent & Fuzzy Systems, 41(2), 2071–2081. Uddin, F., Woo, J., & Lee, B. (2022). Fraud detection using improved K-nearest neighbors classification. Applied Sciences, 12(3), 1187–1202. https://doi.org/10.3390/app12031187 Agarwal, R., & Agarwal, R. (2021). Naive Bayes for fraud detection in banking sector. International Journal of Computer Applications, 183(26), 31–35. Kamal, A., Sadeghi, A., & Zhou, Y. (2022). Real-time credit card fraud detection with Naive Bayes in big data streams. IEEE Access, 10, 55342–55351. https://doi.org/10.1109/ACCESS.2022.3178412 Ghosh, A., & Gupta, S. (2021). Decision tree-based intelligent model for fraud detection. Neural Computing and Applications, 33(4), 11213–11229. https://doi.org/10.1007/s00521-020-05603-w Hassan, A., Iddrisu, M. B. H., Adebayo, O., Oladipo, O., Bello, O. A., Ogundipe, A., Mohammed, D., Adebola, F., Alonge, O. A., Alhassan, I., Ibrahim, M., Suleiman, M., Mohammed, A., Bello, M., Usman, A., Musa, A., Lawal, I., & Abdullahi, M. (2022). Hybrid machine learning approach for financial fraud detection using decision trees. IEEE Transactions on Computational Social Systems, 9(2), 456–465. https://doi.org/10.1109/TCSS.2021.3065478 Wang, L., & Zhang, Y. (2023). A probabilistic approach to credit card fraud detection using Gaussian Naive Bayes. Journal of Financial Data Science and Analytics, 6(2), 101–115. https://doi.org/10.1007/s42425-023-00189-2