International Journal of Engineering and Modern Technology (IJEMT )
E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 10 NO. 11 2024
DOI: 10.56201/ijemt.v10.no11.2024.pg185.196
Ereyananyo OmusoWilson, Eli D Goodluck
This study evaluates the effectiveness of natural surfactants derived from Vernonia Amygdalina in enhancing oil recovery from sandstone reservoirs in the Niger Delta. The research focuses on the surfactant's impact on critical petrophysical properties, specifically porosity and hydraulic conductivity. Various concentrations of the surfactant were tested to determine their influence on solution viscosity, pH, and density, along with the critical micelle concentration (CMC). Core flooding experiments were conducted to analyze the porosity and permeability changes in reservoir samples. Results indicated that the addition of Vernonia Amygdalina surfactants reduced pH levels while increasing viscosity and density. However, increased surfactant concentration correlated with reduced porosity, and the permeability exhibited a partial sinusoidal effect. This study provides insights into the potential of natural surfactants as effective agents for enhancing oil recovery while addressing formation integrity.
Natural surfactants, oil recovery, formation damage, Vernonia Amygdalina, Niger Delta, sandstone reservoirs
Abdurrahman, M., Kamal, M. S., Ramadhan, R., Daniati, A., Arsad, A., Abdul Rahman, A.
F., & Rita, N. (2023). Ecofriendly natural surfactants in the oil and gas industry: a
comprehensive review. ACS omega, 8(44), 41004-41021.
https://doi.org/10.1007/s10924-023-03132-1
Abramova, A. V., Abramov, V. O., Kuleshov, S. P., & Timashev, E. O. (2014). Analysis of
the modern methods for enhanced oil recovery. Energy Science and Technology, 3,
118-148.
Adenutsi, C. D., Turkson, J. N., Wang, L., Zhao, G., Zhang, T., Quaye, J. A., ... & Sokama-
Neuyam, Y. A. (2023). Review on Potential Application of Saponin-Based Natural
Surfactants for Green Chemical Enhanced Oil Recovery: Perspectives and
Progresses. Energy & Fuels, 37(13), 8781-8823.
https://doi.org/10.1021/acs.energyfuels.3c00627
Ahmadi, S., Hosseini, M., Tangestani, E., Mousavi, S. E., & Niazi, M. (2020). Wettability
alteration and oil recovery by spontaneous imbibition of smart water and surfactants
into carbonates. Petroleum Science, 17, 712-721. https://doi.org/10.1007/s12182-019-
00412-1
Alvarado, V., & Manrique, E. (2010). "Enhanced Oil Recovery: An Overview." Oil & Gas
Science and Technology, 65(1), 5-11. https://doi.org/10.3390/en3091529
Alvarez, J. O., & Schechter, D. S. (2017). Wettability alteration and spontaneous imbibition
in unconventional liquid reservoirs by surfactant additives. SPE Reservoir Evaluation
& Engineering, 20(01), 107-117. https://doi.org/10.2118/177057-PA
Atta, D. Y., Negash, B. M., Yekeen, N., & Habte, A. D. (2021). A state-of-the-art review on
the application of natural surfactants in enhanced oil recovery. Journal of Molecular
Liquids, 321, 114888. https://doi.org/10.1016/j.molliq.2020.114888
Ayirala, S., Sofi, A., Li, Z., & Xu, Z. (2021). Surfactant and surfactant-polymer effects on
wettability and crude oil liberation in carbonates. Journal of Petroleum Science and
Engineering, 207, 109117. https://doi.org/10.1016/j.petrol.2021.109117
Bahrami, N. (2013). Evaluating factors controlling damage and productivity in tight gas
reservoirs. Springer Science & Business Media.
Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., ... &
Marchant, R. (2010). Microbial biosurfactants production, applications and future
potential. Applied microbiology and biotechnology, 87, 427-444.
https://doi.org/10.1007/s00253-010-2589-0
Belhaj, A. F., Elraies, K. A., Mahmood, S. M., Zulkifli, N. N., Akbari, S., & Hussien, O. S.
(2020). The effect of surfactant concentration, salinity, temperature, and pH on
surfactant adsorption for chemical enhanced oil recovery: a review. Journal of
Petroleum Exploration and Production Technology, 10, 125-137.
https://doi.org/10.1007/s13202-019-0685-y
Bera, A., & Mandal, A. (2015). Microemulsions: a novel approach to enhanced oil recovery:
a review. Journal of Petroleum Exploration and Production Technology, 5, 255-268.
https://doi.org/10.1007/s13202-014-0139-5
Cao, J. (2018). Impact of Biofilm Formation in Microbial Enhanced Oil Recovery
Performance. University of Calgary: Calgary, AB, Canada.
http://hdl.handle.net/1880/109413
Chang, Z., Chen, X., & Peng, Y. (2018). The adsorption behaviour of surfactants on mineral
surfaces in the presence of electrolytes–A critical review. Minerals Engineering, 121,
66-76. https://doi.org/10.1016/j.mineng.2018.03.002
Chowdhury, S., Shrivastava, S., Kakati, A., & Sangwai, J. S. (2022). Comprehensive review
on the role of surfactants in the chemical enhanced oil recovery process. Industrial &
Engineering Chemistry Research, 61(1), 21-64.
https://doi.org/10.1021/acs.iecr.1c03301 .
F., Mahmood, S. M., Yekeen, N., Akbari, S., & Sharifigaliuk, H. (2022). Polymeric
surfactants for enhanced oil recovery: A review of recent progress. Journal of
Petroleum Science and Engineering, 208, 109358.
https://doi.org/10.1016/j.petrol.2016.07.007
Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., & Yusuff, A. S. (2019). An overview of
chemical enhanced oil recovery: recent advances and prospects. International Nano
Letters, 9, 171-202. https://doi.org/10.1007/s40089-019-0272-8
Groenendijk, D. J., & van Wunnik, J. N. (2021). The impact of micelle formation on
surfactant adsorption–desorption. ACS omega, 6(3), 2248-2254.
https://doi.org/10.1021/acsomega.0c05532
Imuetinyan, H., Agi, A., Gbadamosi, A., & Junin, R. (2022). Extraction, characterization and
evaluation of saponin-based natural surfactant for enhanced oil recovery. Arabian
Journal of Geosciences, 15(3), 226. https://doi.org/10.1007/s12517-021-09275-6
Isaac, O. T., Pu, H., Oni, B. A., & Samson, F. A. (2022). Surfactants employed in
conventional and unconventional reservoirs for enhanced oil recovery—A
review. Energy Reports, 8, 2806-2830. https://doi.org/10.1016/j.egyr.2022.01.187
Kamal, M. S., Adewunmi, A. A., Sultan, A. S., Al-Hamad, M. F., & Mehmood, U. (2017).
Recent advances in nanoparticles enhanced oil recovery: rheology, interfacial tension,
oil recovery, and wettability alteration. Journal of Nanomaterials, 2017(1), 2473175.
https://doi.org/10.1155/2017/2473175
Karatayev, M., et al. (2019). "Future Energy Demand and Oil Production: A Global
Overview." Energy Policy, 132, 870-878.
https://doi.org/10.1021/acs.energyfuels.1c01327
Kesarwani, H., Saxena, A., Saxena, N., & Sharma, S. (2021). Oil mobilization potential of a
novel anionic Karanj oil surfactant: Interfacial, wetting characteristic, adsorption, and
oil recovery studies. Energy & Fuels, 35(13), 10597-10610.
https://doi.org/10.1021/acs.energyfuels.1c01327
Kumar, A., Singh, S. K., Kant, C., Verma, H., Kumar, D., Singh, P. P., ... & Kumar, M.
(2021). Microbial biosurfactant: a new frontier for sustainable agriculture and
pharmaceutical industries. Antioxidants, 10(9), 1472.
https://doi.org/10.3390/antiox10091472
Massarweh, O., & Abushaikha, A. S. (2020). The use of surfactants in enhanced oil recovery:
A review of recent advances. Energy Reports, 6, 3150-3178.
https://doi.org/10.1016/j.egyr.2020.11.009
Mohammed, M., & Babadagli, T. (2015). Wettability alteration: A comprehensive review of
materials/methods and testing the selected ones on heavy-oil containing oil-wet
systems. Advances in colloid and interface science, 220, 54-77.
https://doi.org/10.1016/j.cis.2015.02.006
Negin, C., Ali, S., & Xie, Q. (2017). Most common surfactants employed in chemical
enhanced oil recovery. Petroleum, 3(2), 197-211.
https://doi.org/10.1016/j.petlm.2016.11.007
Nguyen, P., & Sanders, M. (2022). Sand control completion using in-situ resin consolidation.
In Flow Assurance (pp. 443-501). Gulf Professional Publishing.
https://doi.org/10.1016/B978-0-12-822010-8.00002-7
Niu, J., Liu, Q., Lv, J., & Peng, B. (2020). Review on microbial enhanced oil recovery:
Mechanisms, modeling and field trials. Journal of Petroleum Science and
Engineering, 192, 107350. http://dx.doi.org/10.1016/j.petrol.2020.107350
Nwidee, L. N., Lebedev, M., Barifcani, A., Sarmadivaleh, M., & Iglauer, S. (2017).
Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation.
Journal of Colloid and Interface Science, 504, 334-345.
https://doi.org/10.1016/j.jcis.2017.04.078
Ode, J. E., Onyekonwu, M. O., Ikiensikimama, S. S., & Uzoho, C. U. (2024). Comparative
Assessment of Conventionally and Locally Sourced Surfactants for Enhancing Steam
Flooding Techniques for Heavy Oil Recovery in Niger Delta. Journal of Engineering
Research and Reports, 26(1), 46-61. https://doi.org/10.9734/jerr/2024/v26i11062
Olayiwola, S. O., & Dejam, M. (2019). A comprehensive review on interaction of
nanoparticles with low salinity water and surfactant for enhanced oil recovery in
sandstone and carbonate reservoirs. Fuel, 241, 1045-1057.
https://doi.org/10.1016/j.fuel.2018.12.122
Pal