INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )
E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 11 NO. 1 2025
DOI: 10.56201/ijccp.v11.no1.2025.pg1.8
Lawal Ibrahim, Omejeh Timothy Enejoh, Dr. Ruth Haruna Anyalewa, Sumaiyat Sadauki Abubakar
Hydrogen is an abundant element and a flexible energy carrier, offering substantial potential as an environmentally friendly energy source to tackle global energy issues. When used as a fuel, hydrogen generates only water vapor upon combustion or in fuel cells, presenting a means to reduce carbon emissions in various sectors, including transportation, industry, and power generation. Nevertheless, conventional hydrogen production methods often depend on fossil fuels, leading to carbon emissions unless integrated with carbon capture and storage solutions Hydrogen which is a clean energy carrier, offers a promising alternative. However, the transition from a conventional petroleum-based energy economy to a hydrogen economy involves many uncertainties regarding concerns such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, hydrogen safety issues and the response of carbon-based fuel markets. This paper presents an assessment of the economic impact of hydrogen energy on the transportation and energy use sectors of Nigeria, along with implications for Greenhouse Gas (GHG) emissions. It also assesses the economic advantage of hydrogen to fossil fuel in Nigeria, considering production costs, infrastructure, and market demand. Our analysis reveals that hydrogen production can create new industries, jobs, and revenue streams, while reducing greenhouse gas emissions and environmental impact. Although hydrogen production costs are currently higher than fossil fuel extraction, Nigeria's abundant resources and growing energy demand make hydrogen an attractive option for future energy security and economic growth.
Greenhouse Gas; Hydrogen; Petroleum-based energy; Fossil fuel
A?bulut, Ü., Y?ld?z, G., Bak?r, H., Polat, F., Biçen, Y., Ergün, A., et al. (2023). Current practices,
potentials, challenges, future opportunities, environmental and economic assumptions for
Türkiye’s clean and sustainable energy policy: a comprehensive assessment. Sustain.
Energy Technol. Assessments 56, 103019. doi:10.1016/j.seta.2023.103019
Ajayi, O. O., Ohijeagbon, O. D., Mercy, O., and Ameh, A. (2016). Potential and econometrics
analysis of standalone RE facility for rural community utilization and embedded generation
in North-East, Nigeria. Sustain. Cities Soc. 21, 66–77. doi:10.1016/ j.scs.2016.01.003
Azni, M. A., Khalid, R.Md, Hasran, U. A., and Kamarudin, S. K. (2023). Review of theeffects of
fossil fuels and the need for a hydrogen fuel cell policy in Malaysia.Sustainability 15 (5),
doi:10.3390/su15054033
Banava, A. (2023). The EU Green Deal for climate neutrality by 2050-The European
Bhagwat, S., and Olczak, M. (2020). Green hydrogen: bridging the energy transition in Africa and
Europe. Italy: European University Institute
Bothien, M. R., Ciani, A., Wood, J. P., and Fruechtel, G. (2019). Toward decarbonizedpower
generation with gas turbines by using sequential combustion for burninghydrogen. J. Eng.
Gas Turbines Power 141 (12), 121013. doi:10.1115/1.4045256
Chatelier, J. M. (2023). Entering a new era for electrical vessel on inland waterways.Ship Science
and Technology. 16 (32), 21–32.
Dagdougui Hanane. Models, methods and approaches for the planning and design of the future
hydrogen supply chain. IntJ Hydrogen Energy 2012;37:5318e27.
Dincer I, Zamfirescu C. Hydrogen and fuel cell systems. Sustain Energy Syst Appl 2011:519e626.
http://dx.doi.org/10.1007/978-0-387-95861-3_13.
energy and environmental policy for climate change. Greece: European Parliament.
Ewing, M., Israel, B., Jutt, T., Talebian, H., and Stepanik, L. (2020). Hydrogen on the path to net-
zero emissions. Calgary, AB, Canada: PEMBINA Institute.
Genovese, M., Schlüter, A., Scionti, E., Piraino, F., Corigliano, O., and Fragiacomo, P.(2023).
Power-to-hydrogen and hydrogen-to-X energy systems for the industry of thefuture in
Europe. Int. J. Hydrogen Energy 48, 16545–16568. doi:10.1016/j.ijhydene.2023.01.194
Hassan, Q., Abdulateef, A. M., Abdul Hafedh, S., Al-samari, A., Abdulateef, J.,Sameen, A. Z., et
al. (2023a). Renewable energy-to-green hydrogen: a review ofmain resources routes,
processes
and
evaluation.
Int.
J.
Hydrogen
Energy
48,17383–17408.
doi:10.1016/j.ijhydene.2023.01.175
hierarchical phosphorus-doped biphase MoS2 electrocatalysts with enhanced H*
adsorption. Carbon Energy 6, e376. doi:10.1002/cey2.376
Hwang, J., Maharjan, K., and Cho, H. (2023). A review of hydrogen utilization inpower generation
and transportation sectors: achievements and future challenges. Int.J. hydrogen energy 48
(74), 28629–28648. doi:10.1016/j.ijhydene.2023.04.024
IEA
energy
technology
essentials;
April,
2007
[assessed15.02.13],
http://www.iea.org/techno/essentials6.pdf.
Inci, M., Büyük, M., Demir, M. H., and ?lbey, G. (2021). A review and research on fuelcell electric
vehicles: topologies, power electronic converters, energy managementmethods, technical
challenges, marketing and future aspects. Renew. Sustain. EnergyRev. 137, 110648.
doi:10.1016/j.rser.2020.110648
Jie, S., Zhu, Y., Feng, Y., Yang, J., and Xia, C. (2023). A prompt decarbonizationpathway for
shipping: green hydrogen, ammonia, and methanol production andutilization in marine
engines. Atmosphere 14 (3), 584. doi:10.3390/atmos14030584
Kakoulaki, G., Kougias, I., Taylor, N., Dolci, F., Moya, J., and Jäger-Waldau, A. (2021). Green
hydrogen in Europe – a regional assessment: substituting existing production with
electrolysis powered by renewables. Energy Convers. Manag. 228, 113649. doi:10.
1016/j.enconman.2020.113649
Kumar, S., Nanan-Surujbally, A., Sharma, D. P., and Pathak, D. (2024). “Hydrogen
safety/standards (national and international document standards on hydrogen energy and
fuel cell),” in Towards hydrogen infrastructure (Elsevier), 315–346.
Li, X., Raorane, C. J., Xia, C., Wu, Y., Tran, T. K. N., and Khademi, T. (2023). Latestapproaches
on green hydrogen as a potential source of renewable energy towardssustainable energy:
spotlighting of recent innovations, challenges, and future insights. Fuel 334, 126684.
doi:10.1016/j.fuel.2022.126684
Mustafa, A., Lougou, B. G., Shuai, Y., Wang, Z., and Tan, H. (2020). Current technology
development for CO2 utilization into solar fuels and chemicals: a review. J. Energy Chem.
49, 96–123. doi:10.1016/j.jechem.2020.01.023
Odoom, R., Brännlund, R., Amin, K., and Nanzoninge, J. (2023). Oil and gas energy
Panchenko, V. A., Daus, Y. V., Kovalev, A. A., Yudaev, I. V., and Litti, Y. V. (2023).Prospects for
the production of green hydrogen: review of countries with high potential. Int. J. Hydrogen
Energy 48 (12), 4551–4571. doi:10.1016/j.ijhydene.2022.10.084
Pasini, G., Lutzemberger, G., and Ferrari, L. (2023). Renewable electricity fordecarbonisation of
road transport: batteries or E-fuels? Batteries 9 (2), 135. doi:10. 3390/batteries9020135
Pastore, L. M., Lo Basso, G., Sforzini, M., Santoli, L., and de Santoli, L. (2022). Technical,
economic and environmental issues related to electrolysers capacity targets according to
the Italian Hydrogen Strategy: a critical analysis. Renew. Sustain. Energy Rev. 166,
doi:10.1016/j.rser.2022.112685 09.007
Qian, Y., Yu, J., Lyu, Z., Zhang, Q., Lee, T. H., Pang, H., et al. (2023). Durable
Runge, P., Sölch, C., Albert, J., Wasserscheid, P., Zöttl, G., and Grimm, V. (2023).Economic
comparison of electric fuels for heavy duty mobility produced at excellentglobal sites-a
2035 scenario. Appl. Energy 347, 121379. doi:10.1016/j.apenergy.2023.121379
Sánchez-Bastardo, N., Schlogl, R., and Ruland, H. (2021). Methane pyrolysis for zero- emission
hydrogen production: a potential bridge technology from fossil fuels to a renewable and
sustainable hydrogen economy. Industrial and Eng. Chem. Res. 60 (32), 11855–11881.
doi:10.1021/acs.iecr.1c01679
security. Econ. Oil Gas Industry Emerg. Mark. Dev. Econ., 5.
Stavroulakis, P., Koutsouradi, M., Kyriakopoulou-Roussou, M.-C., Manologlou, E.-A., Tsioumas,
V., and Papadimitriou, S. (2023). Decarbonization and sustainable shipping in a post
COVID-19 world. Sci. Afr. 21, e01758. doi:10.1016/j.sciaf.2023.e01758
Vardhan, R. V., Mahalakshmi, R., Anand, R., and Mohanty, A. (2022). “A review on green
hydrogen: future of green hydrogen in India,” in 2022 6th International Conference on
Devices, Circuits and Systems (ICDCS), Coimbatore, India, 21-22 April 2022 (IEEE),
303–309