References
Abedinia, O., Amjady, N. and Ghasemi, A. (2016). A New Metaheuristic Algorithm Based on Shark Smell Optimization. Complexity, 21(5):97-116. Afrasiabi, M., Mohammadi, M., Rastegar, M. and Kargarian, A. (2019). Probabilistic Deep Neural Network Price Forecasting Based on Residential Load and Wind Speed Predictions, IET Renewable Power Generation, 13(11):1840-1848. Allan, J. D., and Flecker, A. S. (1989). The Mating Biology of a Mass-Swarming Mayfly. Animal Behavior, 37, 361-374. Amiruddin, A. A. A. M., Zabiri, H., Taqvi, S. A. A. and Tufa, L.D. (2020). Neural Network Applications in Fault Diagnosis and Detection: An Overview of Implementations in Engineering Related Systems. Neural Computer Applications 32 (2):447-472. Anderson, J. G. (1991). Foraging Behavior of the American White Pelican (Pelecanusery- throrhyncos) in Western Nevada. Colonial Water Birds, 14, 166-172. Askarzadeh, A. (2016). A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. Computers and Structures, 169, 1- Baykasoglu, A. and Akpinar, S. (2017). Weighted Superposition Attraction (WSA): A Swarm Intelligence Algorithm for Optimization Problems-Part1: Unconstrained Optimization. Applied Soft Computing, 56, 520-540. Bracale, A., Caramia, P., Carpinelli, G. and Fazio, A.R.D. (2017) Modeling the Three-phase Short Circuit Contribution of Photovoltaic Systems in Balanced Power Systems. Electrical Power Energy Systems. 93, 204-215. Bukhari, S. B. A., Kim, C., Mehmood, K. K., Haider, R. and Zaman, M. S. U. (2020). Convolutional Neural Network-Based Intelligent Protection Strategy for Micro Grids, IET Generation Transmission. Distribution, 14(7):1177-1185. Chen, K., Hu, J., and He, J. (2018). Detection and Classification of Transmission Line Faults Based on Unsupervised Feature Learning and Convolutional Sparse Auto Encoder. IEEE Transaction. Smart Grid, 9(3):1748-1758. Dhiman, G. and Kumar, V. (2017). Spotted Hyena Optimizer: A Novel Bio-Inspired Based Metaheuristic Technique for Engineering Applications. Advances in Engineering Software, 114, 48-70. Fahim, S. R., Sarker, Y., Islam, O. K., Sarker, S. K., Ishraque, M. F. and Das, S. K. (2019). An Intelligent Approach of Fault Classification and Localization of a Power Transmission Line. 2019 IEEE International Conference Power, Electrical Electronic Industrial Applications PEEIACON, 53-56 Fausto, F., Cuevas, E., Valdivia, A. and González, A. (2017). A Global Optimization Algorithm Inspired in the Behavior of Selfish Herds. Biosystems, 160, 39-55. Geem, Z. W. and Kim, J. H. (2001). A New Heuristic Optimization Algorithm: Harmony Search. Research Gate, 3, 34-47. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley. 1-6. Goni, M. F., Nahiduzzaman, M., Anower, M.S., Rahman, M.M., Islam, M.R., Ahsan, M., Haider, J. and Shahjalal, M. (2023). Fast and Accurate Fault Detection and Classification in Transmission Lines using Extreme Learning Machine. Advances in Electrical Engineering, Electronics and Energy, 3(100107):1-12. Guo, M. F., Yang, N. C. and Chen, W. F. (2019). Deep Learning-based Fault Classification using Hilbert–Huang Transform and Convolutional Neural Network in Power Distribution Systems. IEEE Sensors, 19(16):6905-6913. Hatata, A. Y., Essa, M. A. and Sedhom, B. E. (2022). Adaptive Protection Scheme for FREEDM Microgrid Based on Convolutional Neural Network and Gorilla Troops Optimization Technique. IEEE Access, 10, 55583-55595. Holland, J. H. (1960). Genetic Algorithms: Compare Programs that ‘Evolve’ in Ways the Resemble Natural Selection can Solve Complex Problems even their Creators do not fully understand. http//www.econ.lastate.edu/tesfatsi/Holland.G.AIntro. htm. 07/02/2023. Husseinzadeh-Kashan, A., Tavakkoli-Moghaddam, R., and Gen, M. (2019). Find-Fix-Finish- xploit-Analyze (F3EA) Meta-heuristic Algorithm: An Effective Algorithm with New Evolutionary Operators for Global Optimization. Computers and Industrial Engineering, 128, 192-218. Illias, H. A., Chai, X. R., Abu Bakar, A. H., Mokhlis, H. (2015). Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques. Plosone, 10(6):1-16. Jahani, E. and Chizari, M. (2018). Tackling Global Optimization Problems with a Novel Algorithm: Mouth Brooding Fish Algorithm. Applied Soft Computing, 62, 987-1002. Jing, L., Zhao, M., Li, P. and Xu, X. (2017). A Convolutional Neural Network-Based Feature Learning and Fault Diagnosis Method for the Condition Monitoring of Gearbox. Measurement, 111, 1-10. Kaveh, A., and Dadras, A. (2017). A Novel Meta-Heuristic Optimization Algorithm: Thermal Exchange Optimization. Advances in Engineering Software, 110, 69-84. Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN’95- International Conference on Neural Networks, 1942-1948. Leh, N. A. M., Zain, F. M., Muhammad, Z., Abd Hamid, S. and Rosli, A. D. (2020). Fault Detection Method using ANN for Power Transmission Line, in: 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 79-84. Li, M. D., Zhao, H., Weng, X. W., and Han, T. (2016). A Novel Nature-Inspired Algorithm for Optimization: Virus Colony Search. Advances in Engineering Software, 92, 65-88. Lu, J., Ye, Y., Xu, X. and Li, Q. (2019). Application Research of Convolution Neural Network in Image Classification of Icing Monitoring in Power Grid. EURASIP Journal on Image and Video Processing, 49, 1-11. Marchant, S. (1990). Handbook of Australian, New Zealand and Antarctic Birds: Australian Pelican to Ducks; Oxford University Press: Melbourne, Australia. Mehrabian, A. R. and Lucas, C. (2006). A Novel Numerical Optimization Algorithm Inspired from Weed Colonization. Ecological Informatics, 1(4):355–366. Mirjalili, S. and Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering Software, 95(C):51-67. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., and Mirjalili, S. M. (2017). Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. Advances in Engineering Software, 114, 163-191. Mirjalili, S., Mirjalili, S. M., and Hatamlou, A. (2016). Multi-Verse Optimizer: A Nature Inspired Algorithm for Global Optimization. Neural Computing and Applications, 27(2):495- Moradzadeh, A., Teimourzadeh, H., Mohammadi-Ivatloo, B. and Pourhossein, K. (2022). Hybrid CNN-LSTM Approaches for Identification of Type and Locations of Transmission Line Faults, International Journal of Electrical Power Energy System, 135(107563):117-131. Mozo, A., Ordozgoiti, B. and GoÂmez-Canaval, S. (2018). Forecasting Short-Term Data Center Network Traffic Load with Convolutional Neural Networks. PLOS ONE, 13(2):1-31. Nematollahi, A.F., Rahiminejad, A. and Vahidi, B. (2017). A Novel Physical Based Meta- Heuristic Optimization Method known as Lightning Attachment Procedure Optimization. Applied Soft Computing Journal, 59, 596-621. Ogundoyin, S. O. and Kamil, I. A. (2021). Optimization Techniques and Applications in Fog Computing: An Exhaustive Survey. Elsevier: Swarm and Evolutionary Computation, 66(100937):1-55. Pakzad-Moghaddam, S. H., Mina, H., and Mostafazadeh, P. (2019). A Novel Optimization Booster Algorithm. Computers and Industrial Engineering, 136, 591-613. Pan, C., Lu, M., Biao Xu, B. and Gao, H. (2019). An Improved CNN Model for Within Project Software Defect Prediction. Applied Sciences. 9(2138):1-27. Peckarsky, B. L., McIntosh, A. R., Caudill, C. C. and Dahl, J. (2002). Swarming and Mating Behavior of a Mayfly Baetisbicaudatus suggest Stabilizing Selection for Male Body Size. Behavioral Ecology and Sociobiology, 51(6):530-537.