References
Adam, M., Wessel, M., &Benlian, A. (2021).AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427-445. Addo, P. M., Guegan, D., &Hassani, B. (2018).Credit risk analysis using machine and deep learning models. Risks, 6(2), 38. Afiouni, R. (2019). Organizational learning in the rise of machine learning.In Proceedings of the 40th International Conference on Information Systems (ICIS), Munich, Germany, vol 2 15–18 Agidi, R. C. (2019). Artificial intelligence in Nigeria financial sector. International Journal of Electronics and Information Engineering, 11(1), 40-47. Alhaddad, M. M. (2018). Artificial intelligence in banking industry: A review on fraud detection, credit management, and document processing. ResearchBerg Review of Science and Technology, 2(3), 25- Ali, R., Ali, A., Iqbal, F., Khattak, A. M., &Aleem, S. (2020). A systematic review of artificial intelligence and machine learning techniques for cyber security. In Big Data and Security: First International Conference, ICBDS 2019, Nanjing, China, December 20–22, 2019, Revised Selected Papers 1 (pp. 584-593). Springer Singapore. Alt, M. A., Vizeli, I., &S?pl?can, Z. (2021).Banking with a chatbot–A study on technology acceptance. StudiaUniversitatis Babes-BolyaiOeconomica, 66(1), 13-35. Alarfaj, F. K., Malik, I., Khan, H. U., Almusallam, N., Ramzan, M., & Ahmed, M. (2022).Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms. IEEE Access, 10, 39700-39715 Aminat, A. B., Ezekiel, A. I., &Obafemi, D. S.(2023) The Impact of Internal Control Mechanisms on Fraud Detection and Prevention in Nigeria Deposit Money Banks Apruzzese, G., Laskov, P., Montes de Oca, E., Mallouli, W., Brdalo Rapa, L., Grammatopoulos, A. V., & Di Franco, F. (2023). The role of machine learning in cybersecurity. Digital Threats: Research and Practice, 4(1), 1-38. Aschi, M., Bonura, S., Masi, N., Messina, D., &Profeta, D. (2022).Cybersecurity and fraud detection in financial transactions. In Big Data and Artificial Intelligence in Digital Finance: Increasing Personalization and Trust in Digital Finance using Big Data and AI (pp. 269-278). Cham: Springer International Publishing. Akpanobong, U. E., &Essien, N. P. (2022). Artificial intelligence adoption for financial services optimizations and innovation by commercial banks in Nigeria. International Journal of Advancement in Education, Management, Science and Technology, 5(1), 5-15. Bello, I. H. M. S., &Madaki, A. A. Effect of Control Environment on Fraud Detection in Deposit Money Banks in Nigeria. Boshnak, H. A. (2023). Ownership concentration, managerial ownership, and firm performance in Saudi listed firms. International Journal of Disclosure and Governance, 1-14. Boulieris, P., Pavlopoulos, J., Xenos, A., &Vassalos, V. (2023).Fraud detection with natural language processing. Machine Learning, 1-22 Buyuktepe, O., Catal, C., Kar, G., Bouzembrak, Y., Marvin, H., &Gavai, A. (2023).Food fraud detection using explainable artificial intelligence. Expert Systems, e13387. Cardona, D.R., Werth, O., Schönborn, S., &Breitner, M.H. (2019).A Mixed Methods Analysis of the Adoption and Diffusion of Chatbot Technology in the German Insurance Sector. Americas Conference on Information File:///c:/user/user/downloadsAMCIS-2019-camera-ready -adoption and diffusion of chatbottechnologyininsurance.pdf Charity,B.,Agwu.A.,Babatunde,K.,&Oluwafunbi,F.(2023). Awareness,adoption and perception of whatsapp customer service chatbots in the banking sector:Perspectives from undergraduates students in Lagos,Nigeria.Nigerian Journal of communication review(NJCR).1(2) Cheah,S.&Farzana.P.(2020).Usage and impact of artificial intelligence on Accounting: evidence from Malaysian organizations. Asian journal of business and accounting.13(1), 1-8.https://doi.org/10.22452/ajba.vol13no1.8 Choi, D., & Lee, K. (2018). An artificial intelligence approach to financial fraud detection under IoT environment: A survey and implementation. Security andCommunication Networks,2018.https://doi.org/10.1155/2018/5483472 Cîmpeanu, I. A., Dragomir, D. A., &Zota, R. D. (2023).Banking Chatbots: How Artificial Intelligence Helps the Banks.In Proceedings of the International Conference on Business Excellence (Vol. 17, No. 1, pp. 1716-1727). Clements, J. M., Xu, D., Yousefi, N., &Efimov, D. (2020). Sequential deep learning for credit risk monitoring with tabular financial data. arXiv preprint arXiv:2012.15330. Dasilas, A., &Karanovi?, G. (2023). The impact of FinTech firms on bank performance: evidence from the UK. EuroMed Journal of Business Dayyabu, Y. Y., Arumugam, D., &Balasingam, S. (2023). The application of artificial intelligence techniques in credit card fraud detection: A quantitative study. In E3S Web of Conferences (Vol. 389, p. 07023). Dhruba, M. I. M., Ghani, N. H., Hossain, S., &Shoumo, S. Z. H. (2018). Application of machine learning in credit risk assessment: a prelude to smart banking (Doctoral dissertation, BRAC University). Dongol, P. (2023). Impact of Corporate Board Size on Firm Performance: Evidence from the Nepalese Banks. Journal of Corporate Finance Management and Banking System (JCFMBS) ISSN: 2799- 1059, 3(02), 1-8. Ekpa, M., Onuora, J. K., & David, S.(2023) Artificial Brain Power and Corporate Performance of Listed Deposit Money Banks in Nigeria.Internal Journal of economics and financial management(IJEFM).8(4)1-97. Elegunde, A. F., &Osagie, R. (2020).Artificial intelligence adoption and employee performance in the Nigerian banking industry. International Journal of Management and Administration, 4(8), 189-205. Eneh, O. M. R., Okeke, F. C., &Amahalu, N. N. (2023). ARTIFICIAL INTELLIGENCE AN FRAUD DETECTION OF DEPOSIT MONEY BANKS IN AWKA-SOUTH ANAMBRA STATE, NIGERIA. Global Journal of Artificial Intelligence and Technology Development, 1(2), 8-20 Foote, K. D. (2016). A brief history of artificial intelligence. DATAVERSITY Education, LLC. https://www. dataversity. net/brief-history-artificial-intelligence/(accessed 2002). Frederica, D., &Murwaningsari, E. (2019).The effect of the use of artificial intelligence and operational risk management on banking performance with the implementation of regulation as a moderation variable. ASBL Degres, 146-158. Gupta,A., &Sharma, D. (2019). Customers’Attitude towards Chatbots in Banking Industry of India. International Journal of Innovative technology and exploring Engineering, 8(11),1222-1225. Hassanzadeh, M., &Bigdeli, T. B. (2019). Return of Investment (ROI) in Research and Development (R&D): Towards a framework. In Collaboration–Impact on Productivity and Innovation: Proceedings of 14th International Conference on Webometrics, Informetrics and Scientometrics& 19th COLLNET Meeting 2018, December 5–8, 2018, University of Macau, Macau (pp. 31-39) Harfouche, A., Quinio, B., Skandrani, S. R., &Marciniak, R. (2017).A framework for artificial knowledge creation in organizations.In ICIS 2017. Hambolu, V. O., Omuemu, S. O., &Majeed, A. T. A. (2022).The impact of credit risk on the profitability of commercial banks in Nigeria. Fuoye Journal of Finance and Contemporary Issues, 3(2). 21-35 Imenda, S. (2014). Is there a conceptual difference between theoretical and conceptual frameworks?. Journal of social sciences, 38(2), 185-195. Ikhsan, W. M., Ednoer, E. H., Kridantika, W. S., &Firmansyah, A. (2022).Fraud detection automation through data analytics and artificial intelligence. Riset: JurnalAplikasiEkonomiAkuntansidanBisnis, 4(2), 103-119. Irom, I. M., Joshua, O., Ahmed, M. N., & Emmanuel, A. T. (2018). Effect of firm attributes on return on asset of listed manufacturing companies in Nigeria. Jibril, R. S., Usman, A. M., &Abdullahi, A. A. (2023). Impact of firm attribute on financial Performance of li